Properties

Label 2-930-31.14-c1-0-3
Degree $2$
Conductor $930$
Sign $-0.163 - 0.986i$
Analytic cond. $7.42608$
Root an. cond. $2.72508$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.309 − 0.951i)2-s + (−0.669 + 0.743i)3-s + (−0.809 − 0.587i)4-s + (0.5 − 0.866i)5-s + (0.499 + 0.866i)6-s + (−0.426 + 4.05i)7-s + (−0.809 + 0.587i)8-s + (−0.104 − 0.994i)9-s + (−0.669 − 0.743i)10-s + (0.249 − 0.110i)11-s + (0.978 − 0.207i)12-s + (0.982 + 0.208i)13-s + (3.72 + 1.65i)14-s + (0.309 + 0.951i)15-s + (0.309 + 0.951i)16-s + (−2.45 − 1.09i)17-s + ⋯
L(s)  = 1  + (0.218 − 0.672i)2-s + (−0.386 + 0.429i)3-s + (−0.404 − 0.293i)4-s + (0.223 − 0.387i)5-s + (0.204 + 0.353i)6-s + (−0.161 + 1.53i)7-s + (−0.286 + 0.207i)8-s + (−0.0348 − 0.331i)9-s + (−0.211 − 0.235i)10-s + (0.0750 − 0.0334i)11-s + (0.282 − 0.0600i)12-s + (0.272 + 0.0579i)13-s + (0.996 + 0.443i)14-s + (0.0797 + 0.245i)15-s + (0.0772 + 0.237i)16-s + (−0.595 − 0.265i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 930 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.163 - 0.986i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 930 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.163 - 0.986i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(930\)    =    \(2 \cdot 3 \cdot 5 \cdot 31\)
Sign: $-0.163 - 0.986i$
Analytic conductor: \(7.42608\)
Root analytic conductor: \(2.72508\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{930} (541, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 930,\ (\ :1/2),\ -0.163 - 0.986i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.484873 + 0.571835i\)
\(L(\frac12)\) \(\approx\) \(0.484873 + 0.571835i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.309 + 0.951i)T \)
3 \( 1 + (0.669 - 0.743i)T \)
5 \( 1 + (-0.5 + 0.866i)T \)
31 \( 1 + (3.82 - 4.04i)T \)
good7 \( 1 + (0.426 - 4.05i)T + (-6.84 - 1.45i)T^{2} \)
11 \( 1 + (-0.249 + 0.110i)T + (7.36 - 8.17i)T^{2} \)
13 \( 1 + (-0.982 - 0.208i)T + (11.8 + 5.28i)T^{2} \)
17 \( 1 + (2.45 + 1.09i)T + (11.3 + 12.6i)T^{2} \)
19 \( 1 + (8.10 - 1.72i)T + (17.3 - 7.72i)T^{2} \)
23 \( 1 + (4.05 - 2.94i)T + (7.10 - 21.8i)T^{2} \)
29 \( 1 + (-1.32 + 4.08i)T + (-23.4 - 17.0i)T^{2} \)
37 \( 1 + (-5.91 - 10.2i)T + (-18.5 + 32.0i)T^{2} \)
41 \( 1 + (-2.53 - 2.81i)T + (-4.28 + 40.7i)T^{2} \)
43 \( 1 + (7.92 - 1.68i)T + (39.2 - 17.4i)T^{2} \)
47 \( 1 + (-1.12 - 3.46i)T + (-38.0 + 27.6i)T^{2} \)
53 \( 1 + (-0.479 - 4.56i)T + (-51.8 + 11.0i)T^{2} \)
59 \( 1 + (2.45 - 2.72i)T + (-6.16 - 58.6i)T^{2} \)
61 \( 1 - 6.54T + 61T^{2} \)
67 \( 1 + (-2.37 + 4.11i)T + (-33.5 - 58.0i)T^{2} \)
71 \( 1 + (0.0675 + 0.642i)T + (-69.4 + 14.7i)T^{2} \)
73 \( 1 + (1.41 - 0.627i)T + (48.8 - 54.2i)T^{2} \)
79 \( 1 + (1.28 + 0.570i)T + (52.8 + 58.7i)T^{2} \)
83 \( 1 + (-0.748 - 0.830i)T + (-8.67 + 82.5i)T^{2} \)
89 \( 1 + (9.49 + 6.89i)T + (27.5 + 84.6i)T^{2} \)
97 \( 1 + (4.06 + 2.95i)T + (29.9 + 92.2i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.26352865516582878447375177624, −9.561404232220761418870964100069, −8.797656846053774121841752973344, −8.212020803760795922480259459192, −6.39399016002088171016274290569, −5.92724482209597053524890453976, −4.93874944166279768000620694885, −4.11551610884985184552006497844, −2.81052337102465999086069237412, −1.78847628432910814908302033269, 0.32822743391855199226590032750, 2.13584748875322415130942623119, 3.82250476029837494159083606927, 4.41266677932526412581196654613, 5.73154964614258892998931855513, 6.62175311446088390339135845826, 6.99338835590836998962518289762, 7.949783604576070587622275168925, 8.786509087931737356479981255163, 9.975792793627565241826048447851

Graph of the $Z$-function along the critical line