Properties

Label 2-93-93.92-c3-0-2
Degree $2$
Conductor $93$
Sign $0.646 + 0.763i$
Analytic cond. $5.48717$
Root an. cond. $2.34247$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5.24i·2-s + (−5.08 − 1.08i)3-s − 19.5·4-s + 7.60i·5-s + (5.67 − 26.6i)6-s − 11.1·7-s − 60.3i·8-s + (24.6 + 10.9i)9-s − 39.8·10-s + 35.9·11-s + (99.1 + 21.0i)12-s − 45.7i·13-s − 58.4i·14-s + (8.22 − 38.6i)15-s + 160.·16-s − 126.·17-s + ⋯
L(s)  = 1  + 1.85i·2-s + (−0.978 − 0.208i)3-s − 2.43·4-s + 0.680i·5-s + (0.385 − 1.81i)6-s − 0.601·7-s − 2.66i·8-s + (0.913 + 0.407i)9-s − 1.26·10-s + 0.984·11-s + (2.38 + 0.507i)12-s − 0.975i·13-s − 1.11i·14-s + (0.141 − 0.665i)15-s + 2.50·16-s − 1.79·17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 93 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.646 + 0.763i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 93 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.646 + 0.763i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(93\)    =    \(3 \cdot 31\)
Sign: $0.646 + 0.763i$
Analytic conductor: \(5.48717\)
Root analytic conductor: \(2.34247\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{93} (92, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 93,\ (\ :3/2),\ 0.646 + 0.763i)\)

Particular Values

\(L(2)\) \(\approx\) \(0.0401991 - 0.0186353i\)
\(L(\frac12)\) \(\approx\) \(0.0401991 - 0.0186353i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (5.08 + 1.08i)T \)
31 \( 1 + (136. + 105. i)T \)
good2 \( 1 - 5.24iT - 8T^{2} \)
5 \( 1 - 7.60iT - 125T^{2} \)
7 \( 1 + 11.1T + 343T^{2} \)
11 \( 1 - 35.9T + 1.33e3T^{2} \)
13 \( 1 + 45.7iT - 2.19e3T^{2} \)
17 \( 1 + 126.T + 4.91e3T^{2} \)
19 \( 1 + 41.2T + 6.85e3T^{2} \)
23 \( 1 + 13.0T + 1.21e4T^{2} \)
29 \( 1 + 161.T + 2.43e4T^{2} \)
37 \( 1 - 135. iT - 5.06e4T^{2} \)
41 \( 1 - 393. iT - 6.89e4T^{2} \)
43 \( 1 + 421. iT - 7.95e4T^{2} \)
47 \( 1 + 538. iT - 1.03e5T^{2} \)
53 \( 1 + 174.T + 1.48e5T^{2} \)
59 \( 1 - 506. iT - 2.05e5T^{2} \)
61 \( 1 - 695. iT - 2.26e5T^{2} \)
67 \( 1 - 273.T + 3.00e5T^{2} \)
71 \( 1 + 188. iT - 3.57e5T^{2} \)
73 \( 1 - 882. iT - 3.89e5T^{2} \)
79 \( 1 - 400. iT - 4.93e5T^{2} \)
83 \( 1 + 805.T + 5.71e5T^{2} \)
89 \( 1 + 1.24e3T + 7.04e5T^{2} \)
97 \( 1 + 157.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.90476210948252403820061714728, −13.49961084036780535210907718316, −12.81964737455046695811233006627, −11.19612259491205563947513352885, −9.902635988461917645173669461832, −8.641430284567910811202290904137, −7.12762410457337315031799720832, −6.59676361764855206372584682686, −5.62963557035423682917479149201, −4.17208687447752690326866790911, 0.02997000445146472062026983793, 1.69742833352012479061504187888, 3.90505143136036397139991250646, 4.76524826987899424412060581035, 6.51562833214490504578557717682, 9.054747617105459471529413676350, 9.415701897460846077940707489672, 10.88678011235886603986161648936, 11.39812000092887945516709583392, 12.55689728078407802664721955096

Graph of the $Z$-function along the critical line