| L(s)  = 1  |   + 5.24i·2-s   + (−5.08 − 1.08i)3-s   − 19.5·4-s   + 7.60i·5-s   + (5.67 − 26.6i)6-s   − 11.1·7-s   − 60.3i·8-s   + (24.6 + 10.9i)9-s   − 39.8·10-s   + 35.9·11-s   + (99.1 + 21.0i)12-s   − 45.7i·13-s   − 58.4i·14-s   + (8.22 − 38.6i)15-s   + 160.·16-s   − 126.·17-s  + ⋯ | 
 
| L(s)  = 1  |   + 1.85i·2-s   + (−0.978 − 0.208i)3-s   − 2.43·4-s   + 0.680i·5-s   + (0.385 − 1.81i)6-s   − 0.601·7-s   − 2.66i·8-s   + (0.913 + 0.407i)9-s   − 1.26·10-s   + 0.984·11-s   + (2.38 + 0.507i)12-s   − 0.975i·13-s   − 1.11i·14-s   + (0.141 − 0.665i)15-s   + 2.50·16-s   − 1.79·17-s  + ⋯ | 
 
\[\begin{aligned}\Lambda(s)=\mathstrut & 93 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.646 + 0.763i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 93 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.646 + 0.763i)\, \overline{\Lambda}(1-s) \end{aligned}\]
  Particular Values
  
  
        
      |  \(L(2)\)  | 
            \(\approx\) | 
             \(0.0401991 - 0.0186353i\)  | 
    
    
      |  \(L(\frac12)\)  | 
            \(\approx\) | 
      
       \(0.0401991 - 0.0186353i\)  | 
    
    
        
      |  \(L(\frac{5}{2})\)  | 
             | 
       not available  | 
          
    
      |  \(L(1)\)  | 
             | 
       not available  | 
          
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
 | $p$ | $F_p(T)$ | 
|---|
| bad | 3 |  \( 1 + (5.08 + 1.08i)T \)  | 
 | 31 |  \( 1 + (136. + 105. i)T \)  | 
| good | 2 |  \( 1 - 5.24iT - 8T^{2} \)  | 
 | 5 |  \( 1 - 7.60iT - 125T^{2} \)  | 
 | 7 |  \( 1 + 11.1T + 343T^{2} \)  | 
 | 11 |  \( 1 - 35.9T + 1.33e3T^{2} \)  | 
 | 13 |  \( 1 + 45.7iT - 2.19e3T^{2} \)  | 
 | 17 |  \( 1 + 126.T + 4.91e3T^{2} \)  | 
 | 19 |  \( 1 + 41.2T + 6.85e3T^{2} \)  | 
 | 23 |  \( 1 + 13.0T + 1.21e4T^{2} \)  | 
 | 29 |  \( 1 + 161.T + 2.43e4T^{2} \)  | 
 | 37 |  \( 1 - 135. iT - 5.06e4T^{2} \)  | 
 | 41 |  \( 1 - 393. iT - 6.89e4T^{2} \)  | 
 | 43 |  \( 1 + 421. iT - 7.95e4T^{2} \)  | 
 | 47 |  \( 1 + 538. iT - 1.03e5T^{2} \)  | 
 | 53 |  \( 1 + 174.T + 1.48e5T^{2} \)  | 
 | 59 |  \( 1 - 506. iT - 2.05e5T^{2} \)  | 
 | 61 |  \( 1 - 695. iT - 2.26e5T^{2} \)  | 
 | 67 |  \( 1 - 273.T + 3.00e5T^{2} \)  | 
 | 71 |  \( 1 + 188. iT - 3.57e5T^{2} \)  | 
 | 73 |  \( 1 - 882. iT - 3.89e5T^{2} \)  | 
 | 79 |  \( 1 - 400. iT - 4.93e5T^{2} \)  | 
 | 83 |  \( 1 + 805.T + 5.71e5T^{2} \)  | 
 | 89 |  \( 1 + 1.24e3T + 7.04e5T^{2} \)  | 
 | 97 |  \( 1 + 157.T + 9.12e5T^{2} \)  | 
|  show more |  | 
| show less |  | 
 
     \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−14.90476210948252403820061714728, −13.49961084036780535210907718316, −12.81964737455046695811233006627, −11.19612259491205563947513352885, −9.902635988461917645173669461832, −8.641430284567910811202290904137, −7.12762410457337315031799720832, −6.59676361764855206372584682686, −5.62963557035423682917479149201, −4.17208687447752690326866790911, 
0.02997000445146472062026983793, 1.69742833352012479061504187888, 3.90505143136036397139991250646, 4.76524826987899424412060581035, 6.51562833214490504578557717682, 9.054747617105459471529413676350, 9.415701897460846077940707489672, 10.88678011235886603986161648936, 11.39812000092887945516709583392, 12.55689728078407802664721955096