| L(s) = 1 | + 0.403i·2-s + (4.08 − 3.21i)3-s + 7.83·4-s − 16.8i·5-s + (1.29 + 1.64i)6-s − 11.2·7-s + 6.39i·8-s + (6.31 − 26.2i)9-s + 6.78·10-s − 45.0·11-s + (31.9 − 25.2i)12-s + 63.8i·13-s − 4.54i·14-s + (−54.0 − 68.5i)15-s + 60.1·16-s − 5.18·17-s + ⋯ |
| L(s) = 1 | + 0.142i·2-s + (0.785 − 0.618i)3-s + 0.979·4-s − 1.50i·5-s + (0.0883 + 0.112i)6-s − 0.607·7-s + 0.282i·8-s + (0.233 − 0.972i)9-s + 0.214·10-s − 1.23·11-s + (0.769 − 0.606i)12-s + 1.36i·13-s − 0.0867i·14-s + (−0.930 − 1.18i)15-s + 0.939·16-s − 0.0739·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 93 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.433 + 0.901i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 93 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.433 + 0.901i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(2)\) |
\(\approx\) |
\(1.85563 - 1.16646i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.85563 - 1.16646i\) |
| \(L(\frac{5}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 + (-4.08 + 3.21i)T \) |
| 31 | \( 1 + (37.4 - 168. i)T \) |
| good | 2 | \( 1 - 0.403iT - 8T^{2} \) |
| 5 | \( 1 + 16.8iT - 125T^{2} \) |
| 7 | \( 1 + 11.2T + 343T^{2} \) |
| 11 | \( 1 + 45.0T + 1.33e3T^{2} \) |
| 13 | \( 1 - 63.8iT - 2.19e3T^{2} \) |
| 17 | \( 1 + 5.18T + 4.91e3T^{2} \) |
| 19 | \( 1 - 138.T + 6.85e3T^{2} \) |
| 23 | \( 1 - 133.T + 1.21e4T^{2} \) |
| 29 | \( 1 - 137.T + 2.43e4T^{2} \) |
| 37 | \( 1 - 46.7iT - 5.06e4T^{2} \) |
| 41 | \( 1 - 262. iT - 6.89e4T^{2} \) |
| 43 | \( 1 + 79.0iT - 7.95e4T^{2} \) |
| 47 | \( 1 + 92.9iT - 1.03e5T^{2} \) |
| 53 | \( 1 + 408.T + 1.48e5T^{2} \) |
| 59 | \( 1 + 105. iT - 2.05e5T^{2} \) |
| 61 | \( 1 + 615. iT - 2.26e5T^{2} \) |
| 67 | \( 1 + 275.T + 3.00e5T^{2} \) |
| 71 | \( 1 - 405. iT - 3.57e5T^{2} \) |
| 73 | \( 1 - 781. iT - 3.89e5T^{2} \) |
| 79 | \( 1 + 1.21e3iT - 4.93e5T^{2} \) |
| 83 | \( 1 + 709.T + 5.71e5T^{2} \) |
| 89 | \( 1 + 1.46e3T + 7.04e5T^{2} \) |
| 97 | \( 1 - 780.T + 9.12e5T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.20840332603125615293619967346, −12.48846816116249977482519227524, −11.54557423196122670721195090243, −9.794067607662003347232012707847, −8.792095283264341180900523181940, −7.71272246928639409161372347311, −6.64613315224814492785691770797, −5.07320964536350964812385109781, −3.00771712512271661384340641594, −1.36045551013067168653566687146,
2.83668095027724676397849449436, 3.10607097698076495873504254928, 5.59570677230403500290580914111, 7.13923357782527232923307974622, 7.85910368316217349603950299560, 9.788146838860126584005963039645, 10.48974238102034496297139233717, 11.16698185935562146577187478759, 12.79708174672585336699299205874, 13.87740181011913082403588180613