Properties

Label 2-93-31.3-c2-0-0
Degree $2$
Conductor $93$
Sign $-0.806 + 0.591i$
Analytic cond. $2.53406$
Root an. cond. $1.59187$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−2.93 + 2.13i)2-s + (1.72 + 0.181i)3-s + (2.82 − 8.70i)4-s + (−1.33 + 2.31i)5-s + (−5.44 + 3.14i)6-s + (−11.6 + 2.47i)7-s + (5.77 + 17.7i)8-s + (2.93 + 0.623i)9-s + (−1.01 − 9.65i)10-s + (−10.2 + 9.20i)11-s + (6.44 − 14.4i)12-s + (−6.79 − 15.2i)13-s + (28.8 − 32.0i)14-s + (−2.72 + 3.74i)15-s + (−25.2 − 18.3i)16-s + (−11.1 − 10.0i)17-s + ⋯
L(s)  = 1  + (−1.46 + 1.06i)2-s + (0.574 + 0.0603i)3-s + (0.707 − 2.17i)4-s + (−0.267 + 0.463i)5-s + (−0.906 + 0.523i)6-s + (−1.66 + 0.352i)7-s + (0.722 + 2.22i)8-s + (0.326 + 0.0693i)9-s + (−0.101 − 0.965i)10-s + (−0.929 + 0.836i)11-s + (0.537 − 1.20i)12-s + (−0.522 − 1.17i)13-s + (2.06 − 2.28i)14-s + (−0.181 + 0.249i)15-s + (−1.57 − 1.14i)16-s + (−0.654 − 0.589i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 93 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.806 + 0.591i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 93 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.806 + 0.591i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(93\)    =    \(3 \cdot 31\)
Sign: $-0.806 + 0.591i$
Analytic conductor: \(2.53406\)
Root analytic conductor: \(1.59187\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{93} (34, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 93,\ (\ :1),\ -0.806 + 0.591i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.0643143 - 0.196258i\)
\(L(\frac12)\) \(\approx\) \(0.0643143 - 0.196258i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-1.72 - 0.181i)T \)
31 \( 1 + (-18.4 - 24.9i)T \)
good2 \( 1 + (2.93 - 2.13i)T + (1.23 - 3.80i)T^{2} \)
5 \( 1 + (1.33 - 2.31i)T + (-12.5 - 21.6i)T^{2} \)
7 \( 1 + (11.6 - 2.47i)T + (44.7 - 19.9i)T^{2} \)
11 \( 1 + (10.2 - 9.20i)T + (12.6 - 120. i)T^{2} \)
13 \( 1 + (6.79 + 15.2i)T + (-113. + 125. i)T^{2} \)
17 \( 1 + (11.1 + 10.0i)T + (30.2 + 287. i)T^{2} \)
19 \( 1 + (-13.7 - 6.13i)T + (241. + 268. i)T^{2} \)
23 \( 1 + (24.3 - 7.90i)T + (427. - 310. i)T^{2} \)
29 \( 1 + (3.42 + 4.70i)T + (-259. + 799. i)T^{2} \)
37 \( 1 + (41.8 - 24.1i)T + (684.5 - 1.18e3i)T^{2} \)
41 \( 1 + (1.96 + 18.6i)T + (-1.64e3 + 349. i)T^{2} \)
43 \( 1 + (-4.85 + 10.8i)T + (-1.23e3 - 1.37e3i)T^{2} \)
47 \( 1 + (-51.4 - 37.3i)T + (682. + 2.10e3i)T^{2} \)
53 \( 1 + (-0.944 + 4.44i)T + (-2.56e3 - 1.14e3i)T^{2} \)
59 \( 1 + (5.61 - 53.3i)T + (-3.40e3 - 723. i)T^{2} \)
61 \( 1 - 116. iT - 3.72e3T^{2} \)
67 \( 1 + (-27.2 + 47.2i)T + (-2.24e3 - 3.88e3i)T^{2} \)
71 \( 1 + (21.1 + 4.49i)T + (4.60e3 + 2.05e3i)T^{2} \)
73 \( 1 + (39.4 - 35.5i)T + (557. - 5.29e3i)T^{2} \)
79 \( 1 + (38.4 + 34.6i)T + (652. + 6.20e3i)T^{2} \)
83 \( 1 + (-57.4 + 6.03i)T + (6.73e3 - 1.43e3i)T^{2} \)
89 \( 1 + (35.0 + 11.3i)T + (6.40e3 + 4.65e3i)T^{2} \)
97 \( 1 + (-32.8 + 101. i)T + (-7.61e3 - 5.53e3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.07963489449922304870697850785, −13.63409819040148018104492779363, −12.35789566088022278316141893936, −10.35957140309678165067355211302, −9.928054402623490490236825835702, −8.911723554221494402645713690663, −7.62359732375504110467162987897, −6.97649699924521751740851745467, −5.59176215044244952083323057723, −2.84553555674819987260747224231, 0.22351928139857732785187601625, 2.50225243936854761543371972318, 3.80212857877455166781316750362, 6.71816219846383439046467047164, 7.987709254202647069759231571489, 8.980058175835742717932057727037, 9.760408834029377929060318934276, 10.66407756937255931887779781310, 11.99122001146826350197449134366, 12.84421838713443905482241301301

Graph of the $Z$-function along the critical line