L(s) = 1 | + (0.806 − 2.48i)2-s + (0.309 + 0.951i)3-s + (−3.88 − 2.82i)4-s + 0.899·5-s + 2.60·6-s + (−1.22 − 0.892i)7-s + (−5.91 + 4.29i)8-s + (−0.809 + 0.587i)9-s + (0.725 − 2.23i)10-s + (4.97 + 3.61i)11-s + (1.48 − 4.56i)12-s + (0.226 + 0.696i)13-s + (−3.20 + 2.32i)14-s + (0.278 + 0.855i)15-s + (2.92 + 9.00i)16-s + (−6.12 + 4.44i)17-s + ⋯ |
L(s) = 1 | + (0.569 − 1.75i)2-s + (0.178 + 0.549i)3-s + (−1.94 − 1.41i)4-s + 0.402·5-s + 1.06·6-s + (−0.464 − 0.337i)7-s + (−2.09 + 1.51i)8-s + (−0.269 + 0.195i)9-s + (0.229 − 0.705i)10-s + (1.50 + 1.09i)11-s + (0.428 − 1.31i)12-s + (0.0627 + 0.193i)13-s + (−0.856 + 0.621i)14-s + (0.0717 + 0.220i)15-s + (0.731 + 2.25i)16-s + (−1.48 + 1.07i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 93 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.293 + 0.955i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 93 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.293 + 0.955i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.739667 - 1.00109i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.739667 - 1.00109i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.309 - 0.951i)T \) |
| 31 | \( 1 + (5.25 + 1.83i)T \) |
good | 2 | \( 1 + (-0.806 + 2.48i)T + (-1.61 - 1.17i)T^{2} \) |
| 5 | \( 1 - 0.899T + 5T^{2} \) |
| 7 | \( 1 + (1.22 + 0.892i)T + (2.16 + 6.65i)T^{2} \) |
| 11 | \( 1 + (-4.97 - 3.61i)T + (3.39 + 10.4i)T^{2} \) |
| 13 | \( 1 + (-0.226 - 0.696i)T + (-10.5 + 7.64i)T^{2} \) |
| 17 | \( 1 + (6.12 - 4.44i)T + (5.25 - 16.1i)T^{2} \) |
| 19 | \( 1 + (-0.774 + 2.38i)T + (-15.3 - 11.1i)T^{2} \) |
| 23 | \( 1 + (-4.52 + 3.29i)T + (7.10 - 21.8i)T^{2} \) |
| 29 | \( 1 + (-1.33 + 4.10i)T + (-23.4 - 17.0i)T^{2} \) |
| 37 | \( 1 + 3.76T + 37T^{2} \) |
| 41 | \( 1 + (0.725 - 2.23i)T + (-33.1 - 24.0i)T^{2} \) |
| 43 | \( 1 + (0.134 - 0.414i)T + (-34.7 - 25.2i)T^{2} \) |
| 47 | \( 1 + (-2.73 - 8.41i)T + (-38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (1.19 - 0.871i)T + (16.3 - 50.4i)T^{2} \) |
| 59 | \( 1 + (1.21 + 3.74i)T + (-47.7 + 34.6i)T^{2} \) |
| 61 | \( 1 - 3.67T + 61T^{2} \) |
| 67 | \( 1 - 2.90T + 67T^{2} \) |
| 71 | \( 1 + (-10.4 + 7.56i)T + (21.9 - 67.5i)T^{2} \) |
| 73 | \( 1 + (5.93 + 4.31i)T + (22.5 + 69.4i)T^{2} \) |
| 79 | \( 1 + (-6.63 + 4.82i)T + (24.4 - 75.1i)T^{2} \) |
| 83 | \( 1 + (1.27 - 3.92i)T + (-67.1 - 48.7i)T^{2} \) |
| 89 | \( 1 + (-5.68 - 4.13i)T + (27.5 + 84.6i)T^{2} \) |
| 97 | \( 1 + (-3.07 - 2.23i)T + (29.9 + 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.44971143291335556644678098126, −12.64955184220536664846745145339, −11.52541337882927326015578042691, −10.63406630663478562796233233059, −9.598932490689189173497494238208, −9.024791838929573107899509651087, −6.46780968234335135888422425594, −4.63190764573104365181592430974, −3.78608299066550871619548544553, −2.03678952466704101227949371186,
3.59881859559331496431242696562, 5.40035708970782675543865204663, 6.41589479868231841708599531404, 7.16680278624723035955575096322, 8.706040457286960813197158916553, 9.217279539013560882782028850369, 11.54344185401102202986769857422, 12.80859496237566771807085280398, 13.73106663182644144729957084436, 14.20429394982443426442903799023