Properties

Label 2-93-31.8-c1-0-4
Degree $2$
Conductor $93$
Sign $-0.293 + 0.955i$
Analytic cond. $0.742608$
Root an. cond. $0.861747$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.806 − 2.48i)2-s + (0.309 + 0.951i)3-s + (−3.88 − 2.82i)4-s + 0.899·5-s + 2.60·6-s + (−1.22 − 0.892i)7-s + (−5.91 + 4.29i)8-s + (−0.809 + 0.587i)9-s + (0.725 − 2.23i)10-s + (4.97 + 3.61i)11-s + (1.48 − 4.56i)12-s + (0.226 + 0.696i)13-s + (−3.20 + 2.32i)14-s + (0.278 + 0.855i)15-s + (2.92 + 9.00i)16-s + (−6.12 + 4.44i)17-s + ⋯
L(s)  = 1  + (0.569 − 1.75i)2-s + (0.178 + 0.549i)3-s + (−1.94 − 1.41i)4-s + 0.402·5-s + 1.06·6-s + (−0.464 − 0.337i)7-s + (−2.09 + 1.51i)8-s + (−0.269 + 0.195i)9-s + (0.229 − 0.705i)10-s + (1.50 + 1.09i)11-s + (0.428 − 1.31i)12-s + (0.0627 + 0.193i)13-s + (−0.856 + 0.621i)14-s + (0.0717 + 0.220i)15-s + (0.731 + 2.25i)16-s + (−1.48 + 1.07i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 93 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.293 + 0.955i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 93 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.293 + 0.955i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(93\)    =    \(3 \cdot 31\)
Sign: $-0.293 + 0.955i$
Analytic conductor: \(0.742608\)
Root analytic conductor: \(0.861747\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{93} (70, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 93,\ (\ :1/2),\ -0.293 + 0.955i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.739667 - 1.00109i\)
\(L(\frac12)\) \(\approx\) \(0.739667 - 1.00109i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-0.309 - 0.951i)T \)
31 \( 1 + (5.25 + 1.83i)T \)
good2 \( 1 + (-0.806 + 2.48i)T + (-1.61 - 1.17i)T^{2} \)
5 \( 1 - 0.899T + 5T^{2} \)
7 \( 1 + (1.22 + 0.892i)T + (2.16 + 6.65i)T^{2} \)
11 \( 1 + (-4.97 - 3.61i)T + (3.39 + 10.4i)T^{2} \)
13 \( 1 + (-0.226 - 0.696i)T + (-10.5 + 7.64i)T^{2} \)
17 \( 1 + (6.12 - 4.44i)T + (5.25 - 16.1i)T^{2} \)
19 \( 1 + (-0.774 + 2.38i)T + (-15.3 - 11.1i)T^{2} \)
23 \( 1 + (-4.52 + 3.29i)T + (7.10 - 21.8i)T^{2} \)
29 \( 1 + (-1.33 + 4.10i)T + (-23.4 - 17.0i)T^{2} \)
37 \( 1 + 3.76T + 37T^{2} \)
41 \( 1 + (0.725 - 2.23i)T + (-33.1 - 24.0i)T^{2} \)
43 \( 1 + (0.134 - 0.414i)T + (-34.7 - 25.2i)T^{2} \)
47 \( 1 + (-2.73 - 8.41i)T + (-38.0 + 27.6i)T^{2} \)
53 \( 1 + (1.19 - 0.871i)T + (16.3 - 50.4i)T^{2} \)
59 \( 1 + (1.21 + 3.74i)T + (-47.7 + 34.6i)T^{2} \)
61 \( 1 - 3.67T + 61T^{2} \)
67 \( 1 - 2.90T + 67T^{2} \)
71 \( 1 + (-10.4 + 7.56i)T + (21.9 - 67.5i)T^{2} \)
73 \( 1 + (5.93 + 4.31i)T + (22.5 + 69.4i)T^{2} \)
79 \( 1 + (-6.63 + 4.82i)T + (24.4 - 75.1i)T^{2} \)
83 \( 1 + (1.27 - 3.92i)T + (-67.1 - 48.7i)T^{2} \)
89 \( 1 + (-5.68 - 4.13i)T + (27.5 + 84.6i)T^{2} \)
97 \( 1 + (-3.07 - 2.23i)T + (29.9 + 92.2i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.44971143291335556644678098126, −12.64955184220536664846745145339, −11.52541337882927326015578042691, −10.63406630663478562796233233059, −9.598932490689189173497494238208, −9.024791838929573107899509651087, −6.46780968234335135888422425594, −4.63190764573104365181592430974, −3.78608299066550871619548544553, −2.03678952466704101227949371186, 3.59881859559331496431242696562, 5.40035708970782675543865204663, 6.41589479868231841708599531404, 7.16680278624723035955575096322, 8.706040457286960813197158916553, 9.217279539013560882782028850369, 11.54344185401102202986769857422, 12.80859496237566771807085280398, 13.73106663182644144729957084436, 14.20429394982443426442903799023

Graph of the $Z$-function along the critical line