Properties

Label 2-9248-1.1-c1-0-106
Degree $2$
Conductor $9248$
Sign $1$
Analytic cond. $73.8456$
Root an. cond. $8.59334$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.32·3-s − 0.220·5-s + 2.72·7-s − 1.23·9-s − 4.44·11-s + 6.66·13-s − 0.292·15-s + 7.61·19-s + 3.61·21-s − 4.80·23-s − 4.95·25-s − 5.62·27-s − 3.99·29-s + 3.35·31-s − 5.89·33-s − 0.599·35-s + 5.37·37-s + 8.84·39-s − 7.08·41-s + 4.05·43-s + 0.272·45-s + 2.86·47-s + 0.425·49-s + 11.9·53-s + 0.977·55-s + 10.0·57-s + 9.20·59-s + ⋯
L(s)  = 1  + 0.766·3-s − 0.0984·5-s + 1.02·7-s − 0.413·9-s − 1.33·11-s + 1.84·13-s − 0.0754·15-s + 1.74·19-s + 0.789·21-s − 1.00·23-s − 0.990·25-s − 1.08·27-s − 0.741·29-s + 0.602·31-s − 1.02·33-s − 0.101·35-s + 0.883·37-s + 1.41·39-s − 1.10·41-s + 0.617·43-s + 0.0406·45-s + 0.417·47-s + 0.0607·49-s + 1.63·53-s + 0.131·55-s + 1.33·57-s + 1.19·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9248 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9248 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9248\)    =    \(2^{5} \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(73.8456\)
Root analytic conductor: \(8.59334\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 9248,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.013605897\)
\(L(\frac12)\) \(\approx\) \(3.013605897\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
17 \( 1 \)
good3 \( 1 - 1.32T + 3T^{2} \)
5 \( 1 + 0.220T + 5T^{2} \)
7 \( 1 - 2.72T + 7T^{2} \)
11 \( 1 + 4.44T + 11T^{2} \)
13 \( 1 - 6.66T + 13T^{2} \)
19 \( 1 - 7.61T + 19T^{2} \)
23 \( 1 + 4.80T + 23T^{2} \)
29 \( 1 + 3.99T + 29T^{2} \)
31 \( 1 - 3.35T + 31T^{2} \)
37 \( 1 - 5.37T + 37T^{2} \)
41 \( 1 + 7.08T + 41T^{2} \)
43 \( 1 - 4.05T + 43T^{2} \)
47 \( 1 - 2.86T + 47T^{2} \)
53 \( 1 - 11.9T + 53T^{2} \)
59 \( 1 - 9.20T + 59T^{2} \)
61 \( 1 - 8.32T + 61T^{2} \)
67 \( 1 + 3.81T + 67T^{2} \)
71 \( 1 - 3.27T + 71T^{2} \)
73 \( 1 - 7.55T + 73T^{2} \)
79 \( 1 - 2.42T + 79T^{2} \)
83 \( 1 - 3.22T + 83T^{2} \)
89 \( 1 + 2.29T + 89T^{2} \)
97 \( 1 - 17.7T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.80872695780745850262092550770, −7.43865332576153479035747948577, −6.19186136894544943969651908968, −5.58167391115547273834920369704, −5.10821766827611332744912035301, −3.94761073109534292865482772443, −3.52616650700260156082347428084, −2.57639238595792912672980952726, −1.88126410913453425738411851011, −0.813411620834972393933020495048, 0.813411620834972393933020495048, 1.88126410913453425738411851011, 2.57639238595792912672980952726, 3.52616650700260156082347428084, 3.94761073109534292865482772443, 5.10821766827611332744912035301, 5.58167391115547273834920369704, 6.19186136894544943969651908968, 7.43865332576153479035747948577, 7.80872695780745850262092550770

Graph of the $Z$-function along the critical line