Properties

Label 2-9248-1.1-c1-0-149
Degree $2$
Conductor $9248$
Sign $-1$
Analytic cond. $73.8456$
Root an. cond. $8.59334$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.491·3-s − 1.41·5-s − 4.82·7-s − 2.75·9-s + 2.33·11-s + 3.75·13-s − 0.694·15-s − 0.694·19-s − 2.36·21-s + 1.99·23-s − 2.99·25-s − 2.82·27-s − 3.90·29-s + 8.63·31-s + 1.14·33-s + 6.82·35-s + 10.0·37-s + 1.84·39-s + 7.25·41-s − 10.8·43-s + 3.90·45-s + 3.51·47-s + 16.2·49-s − 8.90·53-s − 3.30·55-s − 0.341·57-s + 8.21·59-s + ⋯
L(s)  = 1  + 0.283·3-s − 0.632·5-s − 1.82·7-s − 0.919·9-s + 0.704·11-s + 1.04·13-s − 0.179·15-s − 0.159·19-s − 0.517·21-s + 0.416·23-s − 0.599·25-s − 0.544·27-s − 0.724·29-s + 1.55·31-s + 0.199·33-s + 1.15·35-s + 1.65·37-s + 0.295·39-s + 1.13·41-s − 1.65·43-s + 0.581·45-s + 0.513·47-s + 2.32·49-s − 1.22·53-s − 0.445·55-s − 0.0451·57-s + 1.06·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9248 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9248 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9248\)    =    \(2^{5} \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(73.8456\)
Root analytic conductor: \(8.59334\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 9248,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
17 \( 1 \)
good3 \( 1 - 0.491T + 3T^{2} \)
5 \( 1 + 1.41T + 5T^{2} \)
7 \( 1 + 4.82T + 7T^{2} \)
11 \( 1 - 2.33T + 11T^{2} \)
13 \( 1 - 3.75T + 13T^{2} \)
19 \( 1 + 0.694T + 19T^{2} \)
23 \( 1 - 1.99T + 23T^{2} \)
29 \( 1 + 3.90T + 29T^{2} \)
31 \( 1 - 8.63T + 31T^{2} \)
37 \( 1 - 10.0T + 37T^{2} \)
41 \( 1 - 7.25T + 41T^{2} \)
43 \( 1 + 10.8T + 43T^{2} \)
47 \( 1 - 3.51T + 47T^{2} \)
53 \( 1 + 8.90T + 53T^{2} \)
59 \( 1 - 8.21T + 59T^{2} \)
61 \( 1 - 9.21T + 61T^{2} \)
67 \( 1 + 4T + 67T^{2} \)
71 \( 1 - 3.84T + 71T^{2} \)
73 \( 1 + 3.37T + 73T^{2} \)
79 \( 1 - 4.64T + 79T^{2} \)
83 \( 1 + 13.4T + 83T^{2} \)
89 \( 1 + 4.98T + 89T^{2} \)
97 \( 1 + 0.891T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.34163748155197044196601368791, −6.52080861441485132180232628421, −6.19945287329659736461774971889, −5.53144514412881936947081087144, −4.26054547318469099609621762687, −3.74559614644553429568493373684, −3.13244395656430177266677103191, −2.48286394970967258993700715228, −1.02346092651300700335309182943, 0, 1.02346092651300700335309182943, 2.48286394970967258993700715228, 3.13244395656430177266677103191, 3.74559614644553429568493373684, 4.26054547318469099609621762687, 5.53144514412881936947081087144, 6.19945287329659736461774971889, 6.52080861441485132180232628421, 7.34163748155197044196601368791

Graph of the $Z$-function along the critical line