Properties

Label 4-912e2-1.1-c1e2-0-1
Degree $4$
Conductor $831744$
Sign $1$
Analytic cond. $53.0327$
Root an. cond. $2.69858$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s − 4·5-s + 3·9-s + 8·15-s − 4·17-s − 2·19-s + 2·25-s − 4·27-s + 12·31-s − 12·45-s + 6·49-s + 8·51-s + 4·57-s − 16·59-s − 16·61-s − 4·67-s − 16·71-s − 4·75-s − 16·79-s + 5·81-s + 16·85-s − 24·93-s + 8·95-s + 12·101-s − 16·103-s + 40·107-s + 20·121-s + ⋯
L(s)  = 1  − 1.15·3-s − 1.78·5-s + 9-s + 2.06·15-s − 0.970·17-s − 0.458·19-s + 2/5·25-s − 0.769·27-s + 2.15·31-s − 1.78·45-s + 6/7·49-s + 1.12·51-s + 0.529·57-s − 2.08·59-s − 2.04·61-s − 0.488·67-s − 1.89·71-s − 0.461·75-s − 1.80·79-s + 5/9·81-s + 1.73·85-s − 2.48·93-s + 0.820·95-s + 1.19·101-s − 1.57·103-s + 3.86·107-s + 1.81·121-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 831744 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 831744 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(831744\)    =    \(2^{8} \cdot 3^{2} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(53.0327\)
Root analytic conductor: \(2.69858\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 831744,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.2784012081\)
\(L(\frac12)\) \(\approx\) \(0.2784012081\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$ \( ( 1 + T )^{2} \)
19$C_2$ \( 1 + 2 T + p T^{2} \)
good5$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
7$C_2^2$ \( 1 - 6 T^{2} + p^{2} T^{4} \)
11$C_2^2$ \( 1 - 20 T^{2} + p^{2} T^{4} \)
13$C_2^2$ \( 1 - 18 T^{2} + p^{2} T^{4} \)
17$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
23$C_2^2$ \( 1 - 44 T^{2} + p^{2} T^{4} \)
29$C_2^2$ \( 1 - 8 T^{2} + p^{2} T^{4} \)
31$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
37$C_2^2$ \( 1 + 54 T^{2} + p^{2} T^{4} \)
41$C_2^2$ \( 1 - 64 T^{2} + p^{2} T^{4} \)
43$C_2$ \( ( 1 - p T^{2} )^{2} \)
47$C_2^2$ \( 1 - 44 T^{2} + p^{2} T^{4} \)
53$C_2^2$ \( 1 - 8 T^{2} + p^{2} T^{4} \)
59$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 + p T^{2} )^{2} \)
79$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
83$C_2^2$ \( 1 - 4 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 - 80 T^{2} + p^{2} T^{4} \)
97$C_2^2$ \( 1 - 186 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.49009964094624038166094604380, −9.981165310540108862159012936753, −9.602276902858558845253128331582, −8.873051395106045766750002972322, −8.622150349541844026849169680908, −8.178868347312978205721783340220, −7.57309351257899498839697613529, −7.41683259987106922561770528688, −7.01432128788786399669100099115, −6.22263554687847045965021356679, −6.15289085109206836247261027225, −5.66044936410074556300768979170, −4.57377032110579241046194191784, −4.50440258527762922987341229427, −4.46532378233860291622697015290, −3.52518044091434973502996649912, −3.10144384723055400883782942775, −2.22504849284825007047214765418, −1.30409466606744166943503749909, −0.29126463668370005812740508918, 0.29126463668370005812740508918, 1.30409466606744166943503749909, 2.22504849284825007047214765418, 3.10144384723055400883782942775, 3.52518044091434973502996649912, 4.46532378233860291622697015290, 4.50440258527762922987341229427, 4.57377032110579241046194191784, 5.66044936410074556300768979170, 6.15289085109206836247261027225, 6.22263554687847045965021356679, 7.01432128788786399669100099115, 7.41683259987106922561770528688, 7.57309351257899498839697613529, 8.178868347312978205721783340220, 8.622150349541844026849169680908, 8.873051395106045766750002972322, 9.602276902858558845253128331582, 9.981165310540108862159012936753, 10.49009964094624038166094604380

Graph of the $Z$-function along the critical line