Properties

Label 4-912e2-1.1-c1e2-0-13
Degree $4$
Conductor $831744$
Sign $1$
Analytic cond. $53.0327$
Root an. cond. $2.69858$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s − 6·5-s + 4·7-s + 6·9-s − 6·13-s − 18·15-s − 12·17-s − 19-s + 12·21-s + 19·25-s + 9·27-s + 6·29-s − 24·35-s − 18·39-s + 3·41-s + 8·43-s − 36·45-s − 6·47-s − 2·49-s − 36·51-s − 6·53-s − 3·57-s + 3·59-s − 10·61-s + 24·63-s + 36·65-s − 9·67-s + ⋯
L(s)  = 1  + 1.73·3-s − 2.68·5-s + 1.51·7-s + 2·9-s − 1.66·13-s − 4.64·15-s − 2.91·17-s − 0.229·19-s + 2.61·21-s + 19/5·25-s + 1.73·27-s + 1.11·29-s − 4.05·35-s − 2.88·39-s + 0.468·41-s + 1.21·43-s − 5.36·45-s − 0.875·47-s − 2/7·49-s − 5.04·51-s − 0.824·53-s − 0.397·57-s + 0.390·59-s − 1.28·61-s + 3.02·63-s + 4.46·65-s − 1.09·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 831744 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 831744 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(831744\)    =    \(2^{8} \cdot 3^{2} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(53.0327\)
Root analytic conductor: \(2.69858\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 831744,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.673055844\)
\(L(\frac12)\) \(\approx\) \(1.673055844\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( 1 - p T + p T^{2} \)
19$C_2$ \( 1 + T + p T^{2} \)
good5$C_2^2$ \( 1 + 6 T + 17 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
7$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
11$C_2^2$ \( 1 - 19 T^{2} + p^{2} T^{4} \)
13$C_2^2$ \( 1 + 6 T + 25 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
17$C_2^2$ \( 1 + 12 T + 65 T^{2} + 12 p T^{3} + p^{2} T^{4} \)
23$C_2^2$ \( 1 + p T^{2} + p^{2} T^{4} \)
29$C_2^2$ \( 1 - 6 T + 7 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
31$C_2^2$ \( 1 - 14 T^{2} + p^{2} T^{4} \)
37$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
41$C_2^2$ \( 1 - 3 T - 32 T^{2} - 3 p T^{3} + p^{2} T^{4} \)
43$C_2$ \( ( 1 - 13 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
47$C_2^2$ \( 1 + 6 T + 59 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
53$C_2^2$ \( 1 + 6 T - 17 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
59$C_2^2$ \( 1 - 3 T - 50 T^{2} - 3 p T^{3} + p^{2} T^{4} \)
61$C_2^2$ \( 1 + 10 T + 39 T^{2} + 10 p T^{3} + p^{2} T^{4} \)
67$C_2^2$ \( 1 + 9 T + 94 T^{2} + 9 p T^{3} + p^{2} T^{4} \)
71$C_2^2$ \( 1 - 6 T - 35 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
73$C_2^2$ \( 1 + 5 T - 48 T^{2} + 5 p T^{3} + p^{2} T^{4} \)
79$C_2^2$ \( 1 - 24 T + 271 T^{2} - 24 p T^{3} + p^{2} T^{4} \)
83$C_2^2$ \( 1 - 139 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 - 6 T - 53 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
97$C_2^2$ \( 1 - 15 T + 172 T^{2} - 15 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.41840626379780311296312983428, −9.661481057239537562704736764342, −9.287835119513140027982092698119, −8.824550681718801704146997609027, −8.478492103003179336485196609584, −8.194285299573093888085316549828, −7.895916634175371834038339563348, −7.43641298284835239214515304451, −7.30992682572251170484029342221, −6.78563242013722514051446588945, −6.24775450661600840688894080162, −4.96679150611870146457670861512, −4.57649365984010908194674420953, −4.45426573245439654641296831217, −4.27127357023424301750208968688, −3.31695438989022365791063079056, −3.10978147213474573631133134553, −2.08914749475677923902413133137, −2.08578192370435271478686706925, −0.53681737565738816201639661095, 0.53681737565738816201639661095, 2.08578192370435271478686706925, 2.08914749475677923902413133137, 3.10978147213474573631133134553, 3.31695438989022365791063079056, 4.27127357023424301750208968688, 4.45426573245439654641296831217, 4.57649365984010908194674420953, 4.96679150611870146457670861512, 6.24775450661600840688894080162, 6.78563242013722514051446588945, 7.30992682572251170484029342221, 7.43641298284835239214515304451, 7.895916634175371834038339563348, 8.194285299573093888085316549828, 8.478492103003179336485196609584, 8.824550681718801704146997609027, 9.287835119513140027982092698119, 9.661481057239537562704736764342, 10.41840626379780311296312983428

Graph of the $Z$-function along the critical line