Properties

Label 8-9075e4-1.1-c1e4-0-4
Degree $8$
Conductor $6.782\times 10^{15}$
Sign $1$
Analytic cond. $2.75736\times 10^{7}$
Root an. cond. $8.51259$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·3-s − 4-s + 10·9-s + 4·12-s + 16-s + 32·23-s − 20·27-s − 2·31-s − 10·36-s + 20·37-s − 12·47-s − 4·48-s − 21·49-s − 28·53-s + 16·59-s − 5·64-s − 10·67-s − 128·69-s + 20·71-s + 35·81-s − 24·89-s − 32·92-s + 8·93-s − 26·97-s − 8·103-s + 20·108-s − 80·111-s + ⋯
L(s)  = 1  − 2.30·3-s − 1/2·4-s + 10/3·9-s + 1.15·12-s + 1/4·16-s + 6.67·23-s − 3.84·27-s − 0.359·31-s − 5/3·36-s + 3.28·37-s − 1.75·47-s − 0.577·48-s − 3·49-s − 3.84·53-s + 2.08·59-s − 5/8·64-s − 1.22·67-s − 15.4·69-s + 2.37·71-s + 35/9·81-s − 2.54·89-s − 3.33·92-s + 0.829·93-s − 2.63·97-s − 0.788·103-s + 1.92·108-s − 7.59·111-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{4} \cdot 5^{8} \cdot 11^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{4} \cdot 5^{8} \cdot 11^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(3^{4} \cdot 5^{8} \cdot 11^{8}\)
Sign: $1$
Analytic conductor: \(2.75736\times 10^{7}\)
Root analytic conductor: \(8.51259\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 3^{4} \cdot 5^{8} \cdot 11^{8} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(2.137424821\)
\(L(\frac12)\) \(\approx\) \(2.137424821\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_1$ \( ( 1 + T )^{4} \)
5 \( 1 \)
11 \( 1 \)
good2$D_4$ \( 1 + T^{2} + p^{2} T^{6} + p^{4} T^{8} \)
7$D_4\times C_2$ \( 1 + 3 p T^{2} + 200 T^{4} + 3 p^{3} T^{6} + p^{4} T^{8} \)
13$D_4\times C_2$ \( 1 + 6 T^{2} - 181 T^{4} + 6 p^{2} T^{6} + p^{4} T^{8} \)
17$C_2^2$ \( ( 1 - 10 T^{2} + p^{2} T^{4} )^{2} \)
19$D_4\times C_2$ \( 1 - 3 T^{2} + 320 T^{4} - 3 p^{2} T^{6} + p^{4} T^{8} \)
23$C_2$ \( ( 1 - 8 T + p T^{2} )^{4} \)
29$D_4\times C_2$ \( 1 + 4 T^{2} - 426 T^{4} + 4 p^{2} T^{6} + p^{4} T^{8} \)
31$D_{4}$ \( ( 1 + T + 54 T^{2} + p T^{3} + p^{2} T^{4} )^{2} \)
37$C_2$ \( ( 1 - 5 T + p T^{2} )^{4} \)
41$C_2^2$ \( ( 1 + 34 T^{2} + p^{2} T^{4} )^{2} \)
43$C_2^2$ \( ( 1 - 13 T^{2} + p^{2} T^{4} )^{2} \)
47$D_{4}$ \( ( 1 + 6 T + 70 T^{2} + 6 p T^{3} + p^{2} T^{4} )^{2} \)
53$D_{4}$ \( ( 1 + 14 T + 122 T^{2} + 14 p T^{3} + p^{2} T^{4} )^{2} \)
59$C_2$ \( ( 1 - 4 T + p T^{2} )^{4} \)
61$D_4\times C_2$ \( 1 + 201 T^{2} + 17336 T^{4} + 201 p^{2} T^{6} + p^{4} T^{8} \)
67$D_{4}$ \( ( 1 + 5 T + 66 T^{2} + 5 p T^{3} + p^{2} T^{4} )^{2} \)
71$D_{4}$ \( ( 1 - 10 T + 134 T^{2} - 10 p T^{3} + p^{2} T^{4} )^{2} \)
73$C_2^2$ \( ( 1 + 119 T^{2} + p^{2} T^{4} )^{2} \)
79$D_4\times C_2$ \( 1 + 270 T^{2} + 30179 T^{4} + 270 p^{2} T^{6} + p^{4} T^{8} \)
83$D_4\times C_2$ \( 1 + 256 T^{2} + 28974 T^{4} + 256 p^{2} T^{6} + p^{4} T^{8} \)
89$D_{4}$ \( ( 1 + 12 T + 82 T^{2} + 12 p T^{3} + p^{2} T^{4} )^{2} \)
97$D_{4}$ \( ( 1 + 13 T + 228 T^{2} + 13 p T^{3} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−5.48369505572690581021023959685, −5.04421822636993312581915704086, −4.99672592731418112094011424665, −4.97253022725782291933388835925, −4.94886801440622726841952345873, −4.50333954128640190777380997918, −4.42089818161899160051462260949, −4.36402238360630483174122965702, −4.20302903358760696809289598581, −3.79014419383862595759232469853, −3.39515952321407790488912262864, −3.37930402626546639070943278359, −3.13784332752953905280868956757, −3.02849696394679924040842740299, −2.82517452002750547873990118415, −2.66578267326586907416951650500, −2.35146083172224955473885958233, −1.92417750604503088004660473592, −1.49516997226307554681809599781, −1.43197190776712929730520281370, −1.37218615691139770239634116864, −1.02568963644196181708013637154, −0.793502500621380926403010043009, −0.46687007040564884550808367053, −0.31297446947974179927242880302, 0.31297446947974179927242880302, 0.46687007040564884550808367053, 0.793502500621380926403010043009, 1.02568963644196181708013637154, 1.37218615691139770239634116864, 1.43197190776712929730520281370, 1.49516997226307554681809599781, 1.92417750604503088004660473592, 2.35146083172224955473885958233, 2.66578267326586907416951650500, 2.82517452002750547873990118415, 3.02849696394679924040842740299, 3.13784332752953905280868956757, 3.37930402626546639070943278359, 3.39515952321407790488912262864, 3.79014419383862595759232469853, 4.20302903358760696809289598581, 4.36402238360630483174122965702, 4.42089818161899160051462260949, 4.50333954128640190777380997918, 4.94886801440622726841952345873, 4.97253022725782291933388835925, 4.99672592731418112094011424665, 5.04421822636993312581915704086, 5.48369505572690581021023959685

Graph of the $Z$-function along the critical line