Properties

Label 2-9065-1.1-c1-0-362
Degree $2$
Conductor $9065$
Sign $-1$
Analytic cond. $72.3843$
Root an. cond. $8.50790$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.69·2-s + 1.96·3-s + 0.887·4-s − 5-s − 3.33·6-s + 1.89·8-s + 0.848·9-s + 1.69·10-s − 0.494·11-s + 1.74·12-s − 1.20·13-s − 1.96·15-s − 4.98·16-s + 3.71·17-s − 1.44·18-s + 2.28·19-s − 0.887·20-s + 0.840·22-s − 2.66·23-s + 3.70·24-s + 25-s + 2.04·26-s − 4.22·27-s + 1.12·29-s + 3.33·30-s − 0.433·31-s + 4.69·32-s + ⋯
L(s)  = 1  − 1.20·2-s + 1.13·3-s + 0.443·4-s − 0.447·5-s − 1.36·6-s + 0.668·8-s + 0.282·9-s + 0.537·10-s − 0.149·11-s + 0.502·12-s − 0.333·13-s − 0.506·15-s − 1.24·16-s + 0.900·17-s − 0.339·18-s + 0.523·19-s − 0.198·20-s + 0.179·22-s − 0.554·23-s + 0.757·24-s + 0.200·25-s + 0.400·26-s − 0.812·27-s + 0.209·29-s + 0.608·30-s − 0.0779·31-s + 0.829·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9065 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9065 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9065\)    =    \(5 \cdot 7^{2} \cdot 37\)
Sign: $-1$
Analytic conductor: \(72.3843\)
Root analytic conductor: \(8.50790\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 9065,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + T \)
7 \( 1 \)
37 \( 1 + T \)
good2 \( 1 + 1.69T + 2T^{2} \)
3 \( 1 - 1.96T + 3T^{2} \)
11 \( 1 + 0.494T + 11T^{2} \)
13 \( 1 + 1.20T + 13T^{2} \)
17 \( 1 - 3.71T + 17T^{2} \)
19 \( 1 - 2.28T + 19T^{2} \)
23 \( 1 + 2.66T + 23T^{2} \)
29 \( 1 - 1.12T + 29T^{2} \)
31 \( 1 + 0.433T + 31T^{2} \)
41 \( 1 + 3.97T + 41T^{2} \)
43 \( 1 - 5.04T + 43T^{2} \)
47 \( 1 + 0.141T + 47T^{2} \)
53 \( 1 - 5.17T + 53T^{2} \)
59 \( 1 + 10.3T + 59T^{2} \)
61 \( 1 + 0.146T + 61T^{2} \)
67 \( 1 + 11.8T + 67T^{2} \)
71 \( 1 + 6.46T + 71T^{2} \)
73 \( 1 - 2.16T + 73T^{2} \)
79 \( 1 - 2.22T + 79T^{2} \)
83 \( 1 - 6.75T + 83T^{2} \)
89 \( 1 - 10.5T + 89T^{2} \)
97 \( 1 + 3.48T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.54110891533112260078891683803, −7.33900083977661000477774637901, −6.21725510968246997867081276808, −5.28780479904575790627167550709, −4.44964858989860269844779366803, −3.63987699321442772429816885363, −2.92987593082017553643175462322, −2.08292919411977492778004019886, −1.17036317280734157944903683203, 0, 1.17036317280734157944903683203, 2.08292919411977492778004019886, 2.92987593082017553643175462322, 3.63987699321442772429816885363, 4.44964858989860269844779366803, 5.28780479904575790627167550709, 6.21725510968246997867081276808, 7.33900083977661000477774637901, 7.54110891533112260078891683803

Graph of the $Z$-function along the critical line