Properties

Label 2-9065-1.1-c1-0-474
Degree $2$
Conductor $9065$
Sign $-1$
Analytic cond. $72.3843$
Root an. cond. $8.50790$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.57·2-s + 3.08·3-s + 0.484·4-s − 5-s + 4.86·6-s − 2.38·8-s + 6.52·9-s − 1.57·10-s − 3.00·11-s + 1.49·12-s − 1.53·13-s − 3.08·15-s − 4.73·16-s + 0.0169·17-s + 10.2·18-s − 3.56·19-s − 0.484·20-s − 4.73·22-s − 2.90·23-s − 7.37·24-s + 25-s − 2.41·26-s + 10.8·27-s − 1.69·29-s − 4.86·30-s − 5.42·31-s − 2.68·32-s + ⋯
L(s)  = 1  + 1.11·2-s + 1.78·3-s + 0.242·4-s − 0.447·5-s + 1.98·6-s − 0.844·8-s + 2.17·9-s − 0.498·10-s − 0.905·11-s + 0.431·12-s − 0.425·13-s − 0.796·15-s − 1.18·16-s + 0.00410·17-s + 2.42·18-s − 0.817·19-s − 0.108·20-s − 1.00·22-s − 0.605·23-s − 1.50·24-s + 0.200·25-s − 0.474·26-s + 2.09·27-s − 0.315·29-s − 0.887·30-s − 0.974·31-s − 0.474·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9065 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9065 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9065\)    =    \(5 \cdot 7^{2} \cdot 37\)
Sign: $-1$
Analytic conductor: \(72.3843\)
Root analytic conductor: \(8.50790\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 9065,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + T \)
7 \( 1 \)
37 \( 1 + T \)
good2 \( 1 - 1.57T + 2T^{2} \)
3 \( 1 - 3.08T + 3T^{2} \)
11 \( 1 + 3.00T + 11T^{2} \)
13 \( 1 + 1.53T + 13T^{2} \)
17 \( 1 - 0.0169T + 17T^{2} \)
19 \( 1 + 3.56T + 19T^{2} \)
23 \( 1 + 2.90T + 23T^{2} \)
29 \( 1 + 1.69T + 29T^{2} \)
31 \( 1 + 5.42T + 31T^{2} \)
41 \( 1 - 3.01T + 41T^{2} \)
43 \( 1 + 5.46T + 43T^{2} \)
47 \( 1 + 5.78T + 47T^{2} \)
53 \( 1 - 9.55T + 53T^{2} \)
59 \( 1 - 8.22T + 59T^{2} \)
61 \( 1 + 9.85T + 61T^{2} \)
67 \( 1 - 3.92T + 67T^{2} \)
71 \( 1 + 15.5T + 71T^{2} \)
73 \( 1 + 4.91T + 73T^{2} \)
79 \( 1 + 1.28T + 79T^{2} \)
83 \( 1 + 13.2T + 83T^{2} \)
89 \( 1 - 2.58T + 89T^{2} \)
97 \( 1 - 2.85T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.44954220177561483551045021129, −6.85269762194213492205441756128, −5.86418057494531488524776071013, −5.07153895874306811986517781762, −4.31807650494127170076522469594, −3.86341573891025088815201955777, −3.12297385040956041887717801095, −2.56905690658309939541332498994, −1.81153034165271672154755648750, 0, 1.81153034165271672154755648750, 2.56905690658309939541332498994, 3.12297385040956041887717801095, 3.86341573891025088815201955777, 4.31807650494127170076522469594, 5.07153895874306811986517781762, 5.86418057494531488524776071013, 6.85269762194213492205441756128, 7.44954220177561483551045021129

Graph of the $Z$-function along the critical line