Properties

Label 2-9065-1.1-c1-0-375
Degree $2$
Conductor $9065$
Sign $-1$
Analytic cond. $72.3843$
Root an. cond. $8.50790$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.684·2-s + 1.13·3-s − 1.53·4-s − 5-s + 0.773·6-s − 2.41·8-s − 1.72·9-s − 0.684·10-s + 2.13·11-s − 1.73·12-s + 1.72·13-s − 1.13·15-s + 1.40·16-s − 2.34·17-s − 1.17·18-s − 0.298·19-s + 1.53·20-s + 1.46·22-s + 3.90·23-s − 2.73·24-s + 25-s + 1.18·26-s − 5.33·27-s − 5.60·29-s − 0.773·30-s + 8.19·31-s + 5.79·32-s + ⋯
L(s)  = 1  + 0.483·2-s + 0.652·3-s − 0.765·4-s − 0.447·5-s + 0.315·6-s − 0.854·8-s − 0.574·9-s − 0.216·10-s + 0.644·11-s − 0.499·12-s + 0.478·13-s − 0.291·15-s + 0.352·16-s − 0.567·17-s − 0.277·18-s − 0.0684·19-s + 0.342·20-s + 0.311·22-s + 0.814·23-s − 0.557·24-s + 0.200·25-s + 0.231·26-s − 1.02·27-s − 1.04·29-s − 0.141·30-s + 1.47·31-s + 1.02·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9065 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9065 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9065\)    =    \(5 \cdot 7^{2} \cdot 37\)
Sign: $-1$
Analytic conductor: \(72.3843\)
Root analytic conductor: \(8.50790\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 9065,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + T \)
7 \( 1 \)
37 \( 1 + T \)
good2 \( 1 - 0.684T + 2T^{2} \)
3 \( 1 - 1.13T + 3T^{2} \)
11 \( 1 - 2.13T + 11T^{2} \)
13 \( 1 - 1.72T + 13T^{2} \)
17 \( 1 + 2.34T + 17T^{2} \)
19 \( 1 + 0.298T + 19T^{2} \)
23 \( 1 - 3.90T + 23T^{2} \)
29 \( 1 + 5.60T + 29T^{2} \)
31 \( 1 - 8.19T + 31T^{2} \)
41 \( 1 + 2.27T + 41T^{2} \)
43 \( 1 + 7.40T + 43T^{2} \)
47 \( 1 - 11.6T + 47T^{2} \)
53 \( 1 - 13.6T + 53T^{2} \)
59 \( 1 + 9.82T + 59T^{2} \)
61 \( 1 + 13.4T + 61T^{2} \)
67 \( 1 - 0.959T + 67T^{2} \)
71 \( 1 + 1.07T + 71T^{2} \)
73 \( 1 - 8.96T + 73T^{2} \)
79 \( 1 - 0.797T + 79T^{2} \)
83 \( 1 + 8.88T + 83T^{2} \)
89 \( 1 + 4.36T + 89T^{2} \)
97 \( 1 + 13.5T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.46926777704296769561780174653, −6.64292059555560593599631081969, −5.93592619634514445134239428086, −5.24114136998234719840707956907, −4.41736789284279404743986211619, −3.86028791957426015660473213124, −3.21829549696445435562678400947, −2.49553856383672395189972067670, −1.20793333373620291661931877571, 0, 1.20793333373620291661931877571, 2.49553856383672395189972067670, 3.21829549696445435562678400947, 3.86028791957426015660473213124, 4.41736789284279404743986211619, 5.24114136998234719840707956907, 5.93592619634514445134239428086, 6.64292059555560593599631081969, 7.46926777704296769561780174653

Graph of the $Z$-function along the critical line