Properties

Label 2-9065-1.1-c1-0-264
Degree $2$
Conductor $9065$
Sign $-1$
Analytic cond. $72.3843$
Root an. cond. $8.50790$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.660·2-s − 3.19·3-s − 1.56·4-s − 5-s + 2.11·6-s + 2.35·8-s + 7.22·9-s + 0.660·10-s − 0.613·11-s + 5.00·12-s + 2.81·13-s + 3.19·15-s + 1.57·16-s + 7.09·17-s − 4.77·18-s + 6.57·19-s + 1.56·20-s + 0.404·22-s − 4.80·23-s − 7.52·24-s + 25-s − 1.86·26-s − 13.5·27-s + 3.39·29-s − 2.11·30-s − 7.40·31-s − 5.74·32-s + ⋯
L(s)  = 1  − 0.466·2-s − 1.84·3-s − 0.782·4-s − 0.447·5-s + 0.861·6-s + 0.831·8-s + 2.40·9-s + 0.208·10-s − 0.184·11-s + 1.44·12-s + 0.781·13-s + 0.825·15-s + 0.393·16-s + 1.72·17-s − 1.12·18-s + 1.50·19-s + 0.349·20-s + 0.0863·22-s − 1.00·23-s − 1.53·24-s + 0.200·25-s − 0.364·26-s − 2.60·27-s + 0.630·29-s − 0.385·30-s − 1.32·31-s − 1.01·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9065 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9065 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9065\)    =    \(5 \cdot 7^{2} \cdot 37\)
Sign: $-1$
Analytic conductor: \(72.3843\)
Root analytic conductor: \(8.50790\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 9065,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + T \)
7 \( 1 \)
37 \( 1 + T \)
good2 \( 1 + 0.660T + 2T^{2} \)
3 \( 1 + 3.19T + 3T^{2} \)
11 \( 1 + 0.613T + 11T^{2} \)
13 \( 1 - 2.81T + 13T^{2} \)
17 \( 1 - 7.09T + 17T^{2} \)
19 \( 1 - 6.57T + 19T^{2} \)
23 \( 1 + 4.80T + 23T^{2} \)
29 \( 1 - 3.39T + 29T^{2} \)
31 \( 1 + 7.40T + 31T^{2} \)
41 \( 1 + 2.11T + 41T^{2} \)
43 \( 1 + 9.13T + 43T^{2} \)
47 \( 1 + 6.36T + 47T^{2} \)
53 \( 1 + 0.152T + 53T^{2} \)
59 \( 1 - 7.42T + 59T^{2} \)
61 \( 1 + 1.71T + 61T^{2} \)
67 \( 1 - 4.28T + 67T^{2} \)
71 \( 1 + 6.25T + 71T^{2} \)
73 \( 1 - 11.3T + 73T^{2} \)
79 \( 1 - 4.50T + 79T^{2} \)
83 \( 1 + 6.17T + 83T^{2} \)
89 \( 1 - 6.79T + 89T^{2} \)
97 \( 1 - 14.9T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.51243099253062484524628102645, −6.65396795720233290148734117519, −5.88562972325269976287624753932, −5.20538637874411259260800733334, −5.00425035769391328658901874882, −3.86509468668430350903791348694, −3.47002241672170978168176449194, −1.52890308665470170198142280711, −0.943149905974053267478934157163, 0, 0.943149905974053267478934157163, 1.52890308665470170198142280711, 3.47002241672170978168176449194, 3.86509468668430350903791348694, 5.00425035769391328658901874882, 5.20538637874411259260800733334, 5.88562972325269976287624753932, 6.65396795720233290148734117519, 7.51243099253062484524628102645

Graph of the $Z$-function along the critical line