| L(s) = 1 | + (−7.44 + 7.44i)7-s + 16.2·11-s + (−12.2 − 12.2i)13-s + (−7.55 + 7.55i)17-s + 14.4i·19-s + (−2.65 − 2.65i)23-s − 34.2i·29-s − 20.4·31-s + (−7.34 + 7.34i)37-s − 25.5·41-s + (−25.1 − 25.1i)43-s + (22.0 − 22.0i)47-s − 61.9i·49-s + (−35.3 − 35.3i)53-s − 88.7i·59-s + ⋯ |
| L(s) = 1 | + (−1.06 + 1.06i)7-s + 1.47·11-s + (−0.942 − 0.942i)13-s + (−0.444 + 0.444i)17-s + 0.762i·19-s + (−0.115 − 0.115i)23-s − 1.18i·29-s − 0.661·31-s + (−0.198 + 0.198i)37-s − 0.622·41-s + (−0.583 − 0.583i)43-s + (0.469 − 0.469i)47-s − 1.26i·49-s + (−0.666 − 0.666i)53-s − 1.50i·59-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.850 + 0.525i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 900 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.850 + 0.525i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{3}{2})\) |
\(\approx\) |
\(0.1819385256\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.1819385256\) |
| \(L(2)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
| good | 7 | \( 1 + (7.44 - 7.44i)T - 49iT^{2} \) |
| 11 | \( 1 - 16.2T + 121T^{2} \) |
| 13 | \( 1 + (12.2 + 12.2i)T + 169iT^{2} \) |
| 17 | \( 1 + (7.55 - 7.55i)T - 289iT^{2} \) |
| 19 | \( 1 - 14.4iT - 361T^{2} \) |
| 23 | \( 1 + (2.65 + 2.65i)T + 529iT^{2} \) |
| 29 | \( 1 + 34.2iT - 841T^{2} \) |
| 31 | \( 1 + 20.4T + 961T^{2} \) |
| 37 | \( 1 + (7.34 - 7.34i)T - 1.36e3iT^{2} \) |
| 41 | \( 1 + 25.5T + 1.68e3T^{2} \) |
| 43 | \( 1 + (25.1 + 25.1i)T + 1.84e3iT^{2} \) |
| 47 | \( 1 + (-22.0 + 22.0i)T - 2.20e3iT^{2} \) |
| 53 | \( 1 + (35.3 + 35.3i)T + 2.80e3iT^{2} \) |
| 59 | \( 1 + 88.7iT - 3.48e3T^{2} \) |
| 61 | \( 1 + 102.T + 3.72e3T^{2} \) |
| 67 | \( 1 + (-24.6 + 24.6i)T - 4.48e3iT^{2} \) |
| 71 | \( 1 + 77.9T + 5.04e3T^{2} \) |
| 73 | \( 1 + (-44.1 - 44.1i)T + 5.32e3iT^{2} \) |
| 79 | \( 1 - 48.4iT - 6.24e3T^{2} \) |
| 83 | \( 1 + (101. + 101. i)T + 6.88e3iT^{2} \) |
| 89 | \( 1 - 156. iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (55.4 - 55.4i)T - 9.40e3iT^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.596151715695344837452411513515, −8.847975338992553793440691412272, −7.981504521585240632276171933677, −6.79711186214701889071575957603, −6.15575003248726827901780024662, −5.31968771731182756484833953663, −3.99709505015392392678793298047, −3.07211526923617230070337120269, −1.89806216474052496092223482801, −0.05827949042895518755581257476,
1.43141534876750915223718995505, 2.98123663213831171756239885986, 3.99792969105739034832541578476, 4.74065935577746486067368757365, 6.21175864535319024808327237093, 6.96530252154549201026880011795, 7.32184237033200380430527161811, 8.969053136102489065444362366863, 9.309372584910599298274980811777, 10.15474425574544095009755653348