L(s) = 1 | + (4 + 4i)2-s + 32i·4-s + (86.1 + 90.5i)5-s + (2.98 + 2.98i)7-s + (−128 + 128i)8-s + (−17.3 + 706. i)10-s + 2.00e3·11-s + (−2.48e3 + 2.48e3i)13-s + 23.9i·14-s − 1.02e3·16-s + (699. + 699. i)17-s − 5.28e3i·19-s + (−2.89e3 + 2.75e3i)20-s + (8.01e3 + 8.01e3i)22-s + (−8.19e3 + 8.19e3i)23-s + ⋯ |
L(s) = 1 | + (0.5 + 0.5i)2-s + 0.5i·4-s + (0.689 + 0.724i)5-s + (0.00871 + 0.00871i)7-s + (−0.250 + 0.250i)8-s + (−0.0173 + 0.706i)10-s + 1.50·11-s + (−1.13 + 1.13i)13-s + 0.00871i·14-s − 0.250·16-s + (0.142 + 0.142i)17-s − 0.770i·19-s + (−0.362 + 0.344i)20-s + (0.752 + 0.752i)22-s + (−0.673 + 0.673i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 90 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.504 - 0.863i)\, \overline{\Lambda}(7-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 90 ^{s/2} \, \Gamma_{\C}(s+3) \, L(s)\cr =\mathstrut & (-0.504 - 0.863i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{7}{2})\) |
\(\approx\) |
\(1.29632 + 2.25957i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.29632 + 2.25957i\) |
\(L(4)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-4 - 4i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-86.1 - 90.5i)T \) |
good | 7 | \( 1 + (-2.98 - 2.98i)T + 1.17e5iT^{2} \) |
| 11 | \( 1 - 2.00e3T + 1.77e6T^{2} \) |
| 13 | \( 1 + (2.48e3 - 2.48e3i)T - 4.82e6iT^{2} \) |
| 17 | \( 1 + (-699. - 699. i)T + 2.41e7iT^{2} \) |
| 19 | \( 1 + 5.28e3iT - 4.70e7T^{2} \) |
| 23 | \( 1 + (8.19e3 - 8.19e3i)T - 1.48e8iT^{2} \) |
| 29 | \( 1 - 4.73e4iT - 5.94e8T^{2} \) |
| 31 | \( 1 - 1.21e4T + 8.87e8T^{2} \) |
| 37 | \( 1 + (1.91e4 + 1.91e4i)T + 2.56e9iT^{2} \) |
| 41 | \( 1 + 6.67e4T + 4.75e9T^{2} \) |
| 43 | \( 1 + (4.31e4 - 4.31e4i)T - 6.32e9iT^{2} \) |
| 47 | \( 1 + (-3.87e4 - 3.87e4i)T + 1.07e10iT^{2} \) |
| 53 | \( 1 + (-1.15e5 + 1.15e5i)T - 2.21e10iT^{2} \) |
| 59 | \( 1 + 2.58e3iT - 4.21e10T^{2} \) |
| 61 | \( 1 - 2.39e5T + 5.15e10T^{2} \) |
| 67 | \( 1 + (-9.73e4 - 9.73e4i)T + 9.04e10iT^{2} \) |
| 71 | \( 1 - 4.89e5T + 1.28e11T^{2} \) |
| 73 | \( 1 + (-3.76e5 + 3.76e5i)T - 1.51e11iT^{2} \) |
| 79 | \( 1 + 2.70e5iT - 2.43e11T^{2} \) |
| 83 | \( 1 + (-6.36e5 + 6.36e5i)T - 3.26e11iT^{2} \) |
| 89 | \( 1 - 2.00e5iT - 4.96e11T^{2} \) |
| 97 | \( 1 + (2.93e5 + 2.93e5i)T + 8.32e11iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.61426125715124603134447118535, −12.22483889065581675174509346470, −11.35454977500351025816301801691, −9.852828205822733479565635463812, −8.921252436835584884128650629023, −7.10441856931136775572985311723, −6.53815448105767873683383706377, −5.06139056561354945175234239273, −3.57529120227795552978774051993, −1.91948092966647814700783760470,
0.797608245228006676548514523086, 2.25657782457098327105313612017, 4.01580038619289365316511878230, 5.29880255347128199154275726398, 6.42532279837242430703810355235, 8.192430063498535768267853542526, 9.562759950814433587725911056562, 10.22534457813533570162219880787, 11.89675875263115131871177007650, 12.39606892892691954707093045749