L(s) = 1 | + (4 + 4i)2-s + 32i·4-s + (−124. + 8.53i)5-s + (−288. − 288. i)7-s + (−128 + 128i)8-s + (−532. − 464. i)10-s + 2.63e3·11-s + (1.48e3 − 1.48e3i)13-s − 2.31e3i·14-s − 1.02e3·16-s + (4.91e3 + 4.91e3i)17-s − 6.98e3i·19-s + (−273. − 3.99e3i)20-s + (1.05e4 + 1.05e4i)22-s + (−3.66e3 + 3.66e3i)23-s + ⋯ |
L(s) = 1 | + (0.5 + 0.5i)2-s + 0.5i·4-s + (−0.997 + 0.0682i)5-s + (−0.842 − 0.842i)7-s + (−0.250 + 0.250i)8-s + (−0.532 − 0.464i)10-s + 1.98·11-s + (0.675 − 0.675i)13-s − 0.842i·14-s − 0.250·16-s + (1.00 + 1.00i)17-s − 1.01i·19-s + (−0.0341 − 0.498i)20-s + (0.990 + 0.990i)22-s + (−0.300 + 0.300i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 90 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.986 + 0.162i)\, \overline{\Lambda}(7-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 90 ^{s/2} \, \Gamma_{\C}(s+3) \, L(s)\cr =\mathstrut & (0.986 + 0.162i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{7}{2})\) |
\(\approx\) |
\(1.98009 - 0.162230i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.98009 - 0.162230i\) |
\(L(4)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-4 - 4i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (124. - 8.53i)T \) |
good | 7 | \( 1 + (288. + 288. i)T + 1.17e5iT^{2} \) |
| 11 | \( 1 - 2.63e3T + 1.77e6T^{2} \) |
| 13 | \( 1 + (-1.48e3 + 1.48e3i)T - 4.82e6iT^{2} \) |
| 17 | \( 1 + (-4.91e3 - 4.91e3i)T + 2.41e7iT^{2} \) |
| 19 | \( 1 + 6.98e3iT - 4.70e7T^{2} \) |
| 23 | \( 1 + (3.66e3 - 3.66e3i)T - 1.48e8iT^{2} \) |
| 29 | \( 1 + 3.91e4iT - 5.94e8T^{2} \) |
| 31 | \( 1 + 1.57e4T + 8.87e8T^{2} \) |
| 37 | \( 1 + (521. + 521. i)T + 2.56e9iT^{2} \) |
| 41 | \( 1 - 7.28e4T + 4.75e9T^{2} \) |
| 43 | \( 1 + (-4.75e4 + 4.75e4i)T - 6.32e9iT^{2} \) |
| 47 | \( 1 + (-438. - 438. i)T + 1.07e10iT^{2} \) |
| 53 | \( 1 + (1.86e4 - 1.86e4i)T - 2.21e10iT^{2} \) |
| 59 | \( 1 + 3.12e5iT - 4.21e10T^{2} \) |
| 61 | \( 1 - 1.27e5T + 5.15e10T^{2} \) |
| 67 | \( 1 + (-6.93e3 - 6.93e3i)T + 9.04e10iT^{2} \) |
| 71 | \( 1 + 5.03e4T + 1.28e11T^{2} \) |
| 73 | \( 1 + (-1.67e5 + 1.67e5i)T - 1.51e11iT^{2} \) |
| 79 | \( 1 + 2.00e5iT - 2.43e11T^{2} \) |
| 83 | \( 1 + (2.22e5 - 2.22e5i)T - 3.26e11iT^{2} \) |
| 89 | \( 1 - 7.34e5iT - 4.96e11T^{2} \) |
| 97 | \( 1 + (5.97e5 + 5.97e5i)T + 8.32e11iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.94115181001489239737091796385, −11.98312581066833105617489255749, −10.94200541648251465859375185472, −9.473404133296396735395205692905, −8.148609790865441145114407785320, −7.03122115266869074318671362887, −6.08247778373819066278293174822, −4.08167431764913110604190464394, −3.53662772485637252338322153985, −0.74478658166312553593766945911,
1.21800176615760542349478999145, 3.23037167080652057833105036683, 4.14339606733077983820595667142, 5.87607167948505986206808975648, 7.00995631733830935187862469053, 8.774855411939146991170496542242, 9.568106259968066789131015462113, 11.18064452418169020396877703259, 12.05889965423799788656701628658, 12.50451332095020660266561454844