L(s) = 1 | − 32i·2-s − 1.02e3·4-s + (−6.89e3 + 1.13e3i)5-s − 1.43e4i·7-s + 3.27e4i·8-s + (3.61e4 + 2.20e5i)10-s + 4.93e5·11-s − 9.84e5i·13-s − 4.60e5·14-s + 1.04e6·16-s − 9.98e6i·17-s − 9.97e6·19-s + (7.06e6 − 1.15e6i)20-s − 1.57e7i·22-s − 4.66e6i·23-s + ⋯ |
L(s) = 1 | − 0.707i·2-s − 0.5·4-s + (−0.986 + 0.161i)5-s − 0.323i·7-s + 0.353i·8-s + (0.114 + 0.697i)10-s + 0.924·11-s − 0.735i·13-s − 0.228·14-s + 0.250·16-s − 1.70i·17-s − 0.924·19-s + (0.493 − 0.0809i)20-s − 0.653i·22-s − 0.151i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 90 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.161 - 0.986i)\, \overline{\Lambda}(12-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 90 ^{s/2} \, \Gamma_{\C}(s+11/2) \, L(s)\cr =\mathstrut & (-0.161 - 0.986i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(6)\) |
\(\approx\) |
\(0.0254484 + 0.0299624i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0254484 + 0.0299624i\) |
\(L(\frac{13}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + 32iT \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (6.89e3 - 1.13e3i)T \) |
good | 7 | \( 1 + 1.43e4iT - 1.97e9T^{2} \) |
| 11 | \( 1 - 4.93e5T + 2.85e11T^{2} \) |
| 13 | \( 1 + 9.84e5iT - 1.79e12T^{2} \) |
| 17 | \( 1 + 9.98e6iT - 3.42e13T^{2} \) |
| 19 | \( 1 + 9.97e6T + 1.16e14T^{2} \) |
| 23 | \( 1 + 4.66e6iT - 9.52e14T^{2} \) |
| 29 | \( 1 + 4.31e7T + 1.22e16T^{2} \) |
| 31 | \( 1 - 1.06e8T + 2.54e16T^{2} \) |
| 37 | \( 1 + 1.33e8iT - 1.77e17T^{2} \) |
| 41 | \( 1 + 1.24e9T + 5.50e17T^{2} \) |
| 43 | \( 1 - 1.57e9iT - 9.29e17T^{2} \) |
| 47 | \( 1 - 3.78e8iT - 2.47e18T^{2} \) |
| 53 | \( 1 + 3.54e9iT - 9.26e18T^{2} \) |
| 59 | \( 1 + 6.43e9T + 3.01e19T^{2} \) |
| 61 | \( 1 - 2.83e8T + 4.35e19T^{2} \) |
| 67 | \( 1 - 7.62e9iT - 1.22e20T^{2} \) |
| 71 | \( 1 - 1.48e9T + 2.31e20T^{2} \) |
| 73 | \( 1 - 1.24e10iT - 3.13e20T^{2} \) |
| 79 | \( 1 + 3.51e10T + 7.47e20T^{2} \) |
| 83 | \( 1 - 9.64e9iT - 1.28e21T^{2} \) |
| 89 | \( 1 - 4.39e10T + 2.77e21T^{2} \) |
| 97 | \( 1 - 1.45e11iT - 7.15e21T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.28793477421596929821073509185, −10.19021465633993249741159916803, −8.987788651439238295514279842660, −7.85507948571941922111848789957, −6.68211526935159004244188270329, −4.89023682295322260070746943319, −3.83292699551545675211229175626, −2.74578999442649239685578710627, −1.03137214015693425569582349908, −0.01137351396484860531814232716,
1.61131701621379536192229423231, 3.65985756372080727339330061296, 4.49208336823480620704756614498, 6.05842284485136556413074399947, 7.03617392568787113109806401589, 8.331109131228291371971405472413, 8.962839285555219061378790364298, 10.50139103271891345947822743825, 11.78255318681167959178915780169, 12.56457904346978550374613168526