L(s) = 1 | − 32i·2-s − 1.02e3·4-s + (−1.59e3 − 6.80e3i)5-s − 2.44e4i·7-s + 3.27e4i·8-s + (−2.17e5 + 5.10e4i)10-s + 6.69e5·11-s − 5.79e5i·13-s − 7.83e5·14-s + 1.04e6·16-s − 7.85e6i·17-s + 1.81e7·19-s + (1.63e6 + 6.96e6i)20-s − 2.14e7i·22-s − 1.97e7i·23-s + ⋯ |
L(s) = 1 | − 0.707i·2-s − 0.5·4-s + (−0.228 − 0.973i)5-s − 0.550i·7-s + 0.353i·8-s + (−0.688 + 0.161i)10-s + 1.25·11-s − 0.432i·13-s − 0.389·14-s + 0.250·16-s − 1.34i·17-s + 1.67·19-s + (0.114 + 0.486i)20-s − 0.885i·22-s − 0.638i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 90 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.973 + 0.228i)\, \overline{\Lambda}(12-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 90 ^{s/2} \, \Gamma_{\C}(s+11/2) \, L(s)\cr =\mathstrut & (-0.973 + 0.228i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(6)\) |
\(\approx\) |
\(0.238082 - 2.05905i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.238082 - 2.05905i\) |
\(L(\frac{13}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + 32iT \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (1.59e3 + 6.80e3i)T \) |
good | 7 | \( 1 + 2.44e4iT - 1.97e9T^{2} \) |
| 11 | \( 1 - 6.69e5T + 2.85e11T^{2} \) |
| 13 | \( 1 + 5.79e5iT - 1.79e12T^{2} \) |
| 17 | \( 1 + 7.85e6iT - 3.42e13T^{2} \) |
| 19 | \( 1 - 1.81e7T + 1.16e14T^{2} \) |
| 23 | \( 1 + 1.97e7iT - 9.52e14T^{2} \) |
| 29 | \( 1 - 2.02e8T + 1.22e16T^{2} \) |
| 31 | \( 1 - 1.02e8T + 2.54e16T^{2} \) |
| 37 | \( 1 - 5.02e8iT - 1.77e17T^{2} \) |
| 41 | \( 1 + 3.44e8T + 5.50e17T^{2} \) |
| 43 | \( 1 + 1.43e9iT - 9.29e17T^{2} \) |
| 47 | \( 1 + 1.38e9iT - 2.47e18T^{2} \) |
| 53 | \( 1 + 2.89e8iT - 9.26e18T^{2} \) |
| 59 | \( 1 + 2.47e9T + 3.01e19T^{2} \) |
| 61 | \( 1 - 9.16e7T + 4.35e19T^{2} \) |
| 67 | \( 1 + 3.09e7iT - 1.22e20T^{2} \) |
| 71 | \( 1 + 2.42e10T + 2.31e20T^{2} \) |
| 73 | \( 1 - 3.55e9iT - 3.13e20T^{2} \) |
| 79 | \( 1 - 1.16e10T + 7.47e20T^{2} \) |
| 83 | \( 1 - 2.33e10iT - 1.28e21T^{2} \) |
| 89 | \( 1 + 1.02e11T + 2.77e21T^{2} \) |
| 97 | \( 1 - 5.87e10iT - 7.15e21T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.82216038295906058808985996961, −10.22943928427686655002072015915, −9.320384723000656002471801834587, −8.312150655316179435050311224582, −6.95710423502106703602905382123, −5.22937840549314275375068484350, −4.26079090623659775648624184034, −3.01722989907651524256087263202, −1.22201978876642939518905347834, −0.61506349032387871736958840334,
1.32842556457810966832493401699, 3.06255668592363662493299044802, 4.24430626936263991067189235473, 5.87556113447697916601821059412, 6.68752964223188633071702897223, 7.80133718072661476981113408208, 9.013281898285479374999943214424, 10.05632504261807174563710229068, 11.42881877625928079337372479279, 12.26094217219121893424604705210