L(s) = 1 | − 32i·2-s − 1.02e3·4-s + (−2.82e3 + 6.39e3i)5-s − 1.59e4i·7-s + 3.27e4i·8-s + (2.04e5 + 9.04e4i)10-s − 6.23e5·11-s − 1.54e6i·13-s − 5.09e5·14-s + 1.04e6·16-s + 1.11e6i·17-s − 1.45e7·19-s + (2.89e6 − 6.54e6i)20-s + 1.99e7i·22-s + 6.03e6i·23-s + ⋯ |
L(s) = 1 | − 0.707i·2-s − 0.5·4-s + (−0.404 + 0.914i)5-s − 0.357i·7-s + 0.353i·8-s + (0.646 + 0.286i)10-s − 1.16·11-s − 1.15i·13-s − 0.252·14-s + 0.250·16-s + 0.191i·17-s − 1.35·19-s + (0.202 − 0.457i)20-s + 0.825i·22-s + 0.195i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 90 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.914 + 0.404i)\, \overline{\Lambda}(12-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 90 ^{s/2} \, \Gamma_{\C}(s+11/2) \, L(s)\cr =\mathstrut & (0.914 + 0.404i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(6)\) |
\(\approx\) |
\(1.16842 - 0.246908i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.16842 - 0.246908i\) |
\(L(\frac{13}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + 32iT \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (2.82e3 - 6.39e3i)T \) |
good | 7 | \( 1 + 1.59e4iT - 1.97e9T^{2} \) |
| 11 | \( 1 + 6.23e5T + 2.85e11T^{2} \) |
| 13 | \( 1 + 1.54e6iT - 1.79e12T^{2} \) |
| 17 | \( 1 - 1.11e6iT - 3.42e13T^{2} \) |
| 19 | \( 1 + 1.45e7T + 1.16e14T^{2} \) |
| 23 | \( 1 - 6.03e6iT - 9.52e14T^{2} \) |
| 29 | \( 1 + 2.91e7T + 1.22e16T^{2} \) |
| 31 | \( 1 - 2.33e8T + 2.54e16T^{2} \) |
| 37 | \( 1 - 6.65e8iT - 1.77e17T^{2} \) |
| 41 | \( 1 - 6.63e8T + 5.50e17T^{2} \) |
| 43 | \( 1 - 4.11e8iT - 9.29e17T^{2} \) |
| 47 | \( 1 + 2.47e9iT - 2.47e18T^{2} \) |
| 53 | \( 1 - 3.69e9iT - 9.26e18T^{2} \) |
| 59 | \( 1 - 1.25e9T + 3.01e19T^{2} \) |
| 61 | \( 1 + 4.05e9T + 4.35e19T^{2} \) |
| 67 | \( 1 - 1.84e10iT - 1.22e20T^{2} \) |
| 71 | \( 1 + 3.19e9T + 2.31e20T^{2} \) |
| 73 | \( 1 + 1.51e10iT - 3.13e20T^{2} \) |
| 79 | \( 1 - 4.26e10T + 7.47e20T^{2} \) |
| 83 | \( 1 + 5.86e10iT - 1.28e21T^{2} \) |
| 89 | \( 1 - 3.40e10T + 2.77e21T^{2} \) |
| 97 | \( 1 + 1.37e11iT - 7.15e21T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.68022891922439786770576595133, −10.48171354726038007470424017628, −10.28526034127107706605763147398, −8.422914081393796723201824029087, −7.53853378357779742605972480733, −6.06955932222089353747226983700, −4.57740009242435411928897645595, −3.26900967114692319043395509563, −2.36514707007973775794879101515, −0.59582743890034101072970743803,
0.51405972189965656966632650225, 2.22012095383061859640036446526, 4.12004518561818957646215864295, 5.03122504460321889433494359031, 6.24598714782911183827716429109, 7.62008495457916843132862946357, 8.546536703180808348690175818617, 9.424131473332028032107354329543, 10.88345114458000165656779358587, 12.21741708182473592784134669837