L(s) = 1 | + 716. i·2-s − 2.51e5·4-s + 3.23e6i·5-s + 1.43e7·7-s + 7.64e6i·8-s − 2.31e9·10-s + 3.07e9i·11-s − 7.66e9·13-s + 1.02e10i·14-s − 7.14e10·16-s − 1.87e11i·17-s + 5.61e11·19-s − 8.13e11i·20-s − 2.20e12·22-s − 1.32e12i·23-s + ⋯ |
L(s) = 1 | + 1.39i·2-s − 0.959·4-s + 1.65i·5-s + 0.354·7-s + 0.0569i·8-s − 2.31·10-s + 1.30i·11-s − 0.723·13-s + 0.496i·14-s − 1.03·16-s − 1.58i·17-s + 1.73·19-s − 1.58i·20-s − 1.82·22-s − 0.733i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 9 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.577 + 0.816i)\, \overline{\Lambda}(19-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9 ^{s/2} \, \Gamma_{\C}(s+9) \, L(s)\cr =\mathstrut & (-0.577 + 0.816i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{19}{2})\) |
\(\approx\) |
\(0.697562 - 1.34758i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.697562 - 1.34758i\) |
\(L(10)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
good | 2 | \( 1 - 716. iT - 2.62e5T^{2} \) |
| 5 | \( 1 - 3.23e6iT - 3.81e12T^{2} \) |
| 7 | \( 1 - 1.43e7T + 1.62e15T^{2} \) |
| 11 | \( 1 - 3.07e9iT - 5.55e18T^{2} \) |
| 13 | \( 1 + 7.66e9T + 1.12e20T^{2} \) |
| 17 | \( 1 + 1.87e11iT - 1.40e22T^{2} \) |
| 19 | \( 1 - 5.61e11T + 1.04e23T^{2} \) |
| 23 | \( 1 + 1.32e12iT - 3.24e24T^{2} \) |
| 29 | \( 1 - 7.53e12iT - 2.10e26T^{2} \) |
| 31 | \( 1 - 1.19e12T + 6.99e26T^{2} \) |
| 37 | \( 1 + 7.69e13T + 1.68e28T^{2} \) |
| 41 | \( 1 - 1.99e14iT - 1.07e29T^{2} \) |
| 43 | \( 1 + 1.24e14T + 2.52e29T^{2} \) |
| 47 | \( 1 - 7.45e14iT - 1.25e30T^{2} \) |
| 53 | \( 1 + 3.21e14iT - 1.08e31T^{2} \) |
| 59 | \( 1 - 1.41e16iT - 7.50e31T^{2} \) |
| 61 | \( 1 - 2.06e16T + 1.36e32T^{2} \) |
| 67 | \( 1 - 2.44e16T + 7.40e32T^{2} \) |
| 71 | \( 1 - 2.96e16iT - 2.10e33T^{2} \) |
| 73 | \( 1 - 3.70e16T + 3.46e33T^{2} \) |
| 79 | \( 1 + 9.35e16T + 1.43e34T^{2} \) |
| 83 | \( 1 + 4.70e16iT - 3.49e34T^{2} \) |
| 89 | \( 1 + 1.38e17iT - 1.22e35T^{2} \) |
| 97 | \( 1 + 1.61e17T + 5.77e35T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−17.69516095782873098009438111365, −15.95333321192238158579135854226, −14.78453627929658910323548670580, −14.10546917847517602661780049233, −11.57748886520543884671596612604, −9.789509460929665850648694985645, −7.47631599893058164614049092141, −6.89740048230180916161208932882, −5.04646788298359058574337499328, −2.62074377905480280187360243857,
0.57738083898090725159036934247, 1.63361011555887291374086900046, 3.65527566101630883096175210232, 5.27752533573388415204182519125, 8.349634369808378399561959331631, 9.690595715415190087998231799356, 11.41069761020371683718346392891, 12.48376223296660648122445443820, 13.62667387341056896591121141491, 16.00753724679412050556095468509