L(s) = 1 | − 512·4-s − 1.25e4·7-s + 1.18e5·13-s + 2.62e5·16-s − 9.76e5·19-s − 1.95e6·25-s + 6.44e6·28-s + 1.69e6·31-s − 1.53e7·37-s − 1.65e7·43-s + 1.17e8·49-s − 6.06e7·52-s − 1.17e8·61-s − 1.34e8·64-s + 1.12e8·67-s + 2.96e8·73-s + 5.00e8·76-s − 6.16e8·79-s − 1.48e9·91-s + 1.28e9·97-s + 1.00e9·100-s + 6.22e7·103-s + 2.24e9·109-s − 3.29e9·112-s + ⋯ |
L(s) = 1 | − 4-s − 1.98·7-s + 1.14·13-s + 16-s − 1.71·19-s − 25-s + 1.98·28-s + 0.328·31-s − 1.34·37-s − 0.739·43-s + 2.92·49-s − 1.14·52-s − 1.09·61-s − 64-s + 0.682·67-s + 1.22·73-s + 1.71·76-s − 1.78·79-s − 2.27·91-s + 1.47·97-s + 100-s + 0.0545·103-s + 1.52·109-s − 1.98·112-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 9 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(5)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{11}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
good | 2 | \( 1 + p^{9} T^{2} \) |
| 5 | \( 1 + p^{9} T^{2} \) |
| 7 | \( 1 + 12580 T + p^{9} T^{2} \) |
| 11 | \( 1 + p^{9} T^{2} \) |
| 13 | \( 1 - 118370 T + p^{9} T^{2} \) |
| 17 | \( 1 + p^{9} T^{2} \) |
| 19 | \( 1 + 976696 T + p^{9} T^{2} \) |
| 23 | \( 1 + p^{9} T^{2} \) |
| 29 | \( 1 + p^{9} T^{2} \) |
| 31 | \( 1 - 1691228 T + p^{9} T^{2} \) |
| 37 | \( 1 + 15384490 T + p^{9} T^{2} \) |
| 41 | \( 1 + p^{9} T^{2} \) |
| 43 | \( 1 + 16577080 T + p^{9} T^{2} \) |
| 47 | \( 1 + p^{9} T^{2} \) |
| 53 | \( 1 + p^{9} T^{2} \) |
| 59 | \( 1 + p^{9} T^{2} \) |
| 61 | \( 1 + 117903058 T + p^{9} T^{2} \) |
| 67 | \( 1 - 112542320 T + p^{9} T^{2} \) |
| 71 | \( 1 + p^{9} T^{2} \) |
| 73 | \( 1 - 296368310 T + p^{9} T^{2} \) |
| 79 | \( 1 + 616732324 T + p^{9} T^{2} \) |
| 83 | \( 1 + p^{9} T^{2} \) |
| 89 | \( 1 + p^{9} T^{2} \) |
| 97 | \( 1 - 1288928270 T + p^{9} T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.65771400408966928132105338978, −17.01229941409025196420308296020, −15.60791149521446041112886241683, −13.61520421093302631919623762008, −12.68709146287304402273599092082, −10.17140080936791085162008535274, −8.799319136821458946866051583895, −6.23790552157025490503551065115, −3.70593747015842403415754514185, 0,
3.70593747015842403415754514185, 6.23790552157025490503551065115, 8.799319136821458946866051583895, 10.17140080936791085162008535274, 12.68709146287304402273599092082, 13.61520421093302631919623762008, 15.60791149521446041112886241683, 17.01229941409025196420308296020, 18.65771400408966928132105338978