| L(s) = 1 | + (−0.665 + 2.48i)3-s + (3.12 − 0.837i)5-s + (−1.56 − 2.13i)7-s + (−3.13 − 1.80i)9-s + (0.376 − 1.40i)11-s + (3.11 − 3.11i)13-s + 8.31i·15-s + (2.02 − 1.16i)17-s + (4.40 − 1.18i)19-s + (6.34 − 2.45i)21-s + (1.15 − 1.99i)23-s + (4.72 − 2.73i)25-s + (1.12 − 1.12i)27-s + (1.55 + 1.55i)29-s + (−3.88 − 6.73i)31-s + ⋯ |
| L(s) = 1 | + (−0.384 + 1.43i)3-s + (1.39 − 0.374i)5-s + (−0.590 − 0.807i)7-s + (−1.04 − 0.602i)9-s + (0.113 − 0.423i)11-s + (0.863 − 0.863i)13-s + 2.14i·15-s + (0.490 − 0.283i)17-s + (1.01 − 0.270i)19-s + (1.38 − 0.536i)21-s + (0.240 − 0.416i)23-s + (0.945 − 0.546i)25-s + (0.216 − 0.216i)27-s + (0.288 + 0.288i)29-s + (−0.698 − 1.20i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 896 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.967 - 0.254i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 896 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.967 - 0.254i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.71952 + 0.222506i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.71952 + 0.222506i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 7 | \( 1 + (1.56 + 2.13i)T \) |
| good | 3 | \( 1 + (0.665 - 2.48i)T + (-2.59 - 1.5i)T^{2} \) |
| 5 | \( 1 + (-3.12 + 0.837i)T + (4.33 - 2.5i)T^{2} \) |
| 11 | \( 1 + (-0.376 + 1.40i)T + (-9.52 - 5.5i)T^{2} \) |
| 13 | \( 1 + (-3.11 + 3.11i)T - 13iT^{2} \) |
| 17 | \( 1 + (-2.02 + 1.16i)T + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-4.40 + 1.18i)T + (16.4 - 9.5i)T^{2} \) |
| 23 | \( 1 + (-1.15 + 1.99i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-1.55 - 1.55i)T + 29iT^{2} \) |
| 31 | \( 1 + (3.88 + 6.73i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (0.272 + 1.01i)T + (-32.0 + 18.5i)T^{2} \) |
| 41 | \( 1 + 2.77T + 41T^{2} \) |
| 43 | \( 1 + (-7.12 - 7.12i)T + 43iT^{2} \) |
| 47 | \( 1 + (1.42 - 2.46i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (11.0 + 2.97i)T + (45.8 + 26.5i)T^{2} \) |
| 59 | \( 1 + (-3.77 - 1.01i)T + (51.0 + 29.5i)T^{2} \) |
| 61 | \( 1 + (-3.72 - 13.9i)T + (-52.8 + 30.5i)T^{2} \) |
| 67 | \( 1 + (-2.59 - 0.695i)T + (58.0 + 33.5i)T^{2} \) |
| 71 | \( 1 - 7.48T + 71T^{2} \) |
| 73 | \( 1 + (5.65 + 9.78i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-0.706 - 0.408i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-2.65 - 2.65i)T + 83iT^{2} \) |
| 89 | \( 1 + (2.40 - 4.17i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 5.86iT - 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.03330843731184060426897345893, −9.567250790840043121942669891018, −8.919625824120882370797229383832, −7.65852220993143019510058537353, −6.31498566575432479161586994885, −5.67870763105679549861539443819, −4.96125947689129462998022393502, −3.84479460420843950086639813738, −2.96270740460563417437027178198, −0.999928704110505210183670877016,
1.43323844771511603792869007699, 2.13346051164733935016495281706, 3.35999382795026696540808151818, 5.30142308220739619162767784990, 5.94608533126547422939238953673, 6.58611441474086505006988260502, 7.19642612989372858724852884863, 8.392768986525922365031728476467, 9.331210727155916898398306588069, 9.921390295366796897461355666995