Properties

Label 2-8925-1.1-c1-0-303
Degree $2$
Conductor $8925$
Sign $-1$
Analytic cond. $71.2664$
Root an. cond. $8.44194$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.42·2-s + 3-s + 3.86·4-s + 2.42·6-s − 7-s + 4.52·8-s + 9-s − 3.72·11-s + 3.86·12-s − 1.00·13-s − 2.42·14-s + 3.23·16-s − 17-s + 2.42·18-s − 8.53·19-s − 21-s − 9.02·22-s − 3.33·23-s + 4.52·24-s − 2.42·26-s + 27-s − 3.86·28-s + 2.87·29-s − 7.76·31-s − 1.22·32-s − 3.72·33-s − 2.42·34-s + ⋯
L(s)  = 1  + 1.71·2-s + 0.577·3-s + 1.93·4-s + 0.989·6-s − 0.377·7-s + 1.60·8-s + 0.333·9-s − 1.12·11-s + 1.11·12-s − 0.277·13-s − 0.647·14-s + 0.808·16-s − 0.242·17-s + 0.571·18-s − 1.95·19-s − 0.218·21-s − 1.92·22-s − 0.696·23-s + 0.924·24-s − 0.475·26-s + 0.192·27-s − 0.731·28-s + 0.533·29-s − 1.39·31-s − 0.216·32-s − 0.648·33-s − 0.415·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8925 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8925 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8925\)    =    \(3 \cdot 5^{2} \cdot 7 \cdot 17\)
Sign: $-1$
Analytic conductor: \(71.2664\)
Root analytic conductor: \(8.44194\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 8925,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - T \)
5 \( 1 \)
7 \( 1 + T \)
17 \( 1 + T \)
good2 \( 1 - 2.42T + 2T^{2} \)
11 \( 1 + 3.72T + 11T^{2} \)
13 \( 1 + 1.00T + 13T^{2} \)
19 \( 1 + 8.53T + 19T^{2} \)
23 \( 1 + 3.33T + 23T^{2} \)
29 \( 1 - 2.87T + 29T^{2} \)
31 \( 1 + 7.76T + 31T^{2} \)
37 \( 1 + 0.587T + 37T^{2} \)
41 \( 1 + 4.26T + 41T^{2} \)
43 \( 1 - 4.25T + 43T^{2} \)
47 \( 1 + 13.7T + 47T^{2} \)
53 \( 1 + 13.5T + 53T^{2} \)
59 \( 1 + 0.809T + 59T^{2} \)
61 \( 1 - 13.2T + 61T^{2} \)
67 \( 1 - 12.0T + 67T^{2} \)
71 \( 1 - 1.01T + 71T^{2} \)
73 \( 1 - 5.13T + 73T^{2} \)
79 \( 1 - 11.5T + 79T^{2} \)
83 \( 1 - 3.30T + 83T^{2} \)
89 \( 1 - 10.3T + 89T^{2} \)
97 \( 1 + 12.4T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.14078757689139815849836529300, −6.51227516207860386048891672712, −6.00841132766781314543817302994, −5.05844475531755496004312230255, −4.68339200945083563676525868274, −3.77312673917398412744046789978, −3.31454628616426430580761176884, −2.30287961538920183522271040423, −2.04208201400575344123476176105, 0, 2.04208201400575344123476176105, 2.30287961538920183522271040423, 3.31454628616426430580761176884, 3.77312673917398412744046789978, 4.68339200945083563676525868274, 5.05844475531755496004312230255, 6.00841132766781314543817302994, 6.51227516207860386048891672712, 7.14078757689139815849836529300

Graph of the $Z$-function along the critical line