Properties

Label 2-8925-1.1-c1-0-280
Degree $2$
Conductor $8925$
Sign $-1$
Analytic cond. $71.2664$
Root an. cond. $8.44194$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.72·2-s + 3-s + 0.987·4-s + 1.72·6-s − 7-s − 1.75·8-s + 9-s + 1.78·11-s + 0.987·12-s − 1.28·13-s − 1.72·14-s − 4.99·16-s − 17-s + 1.72·18-s − 0.951·19-s − 21-s + 3.09·22-s − 5.16·23-s − 1.75·24-s − 2.22·26-s + 27-s − 0.987·28-s − 4.09·29-s + 10.8·31-s − 5.14·32-s + 1.78·33-s − 1.72·34-s + ⋯
L(s)  = 1  + 1.22·2-s + 0.577·3-s + 0.493·4-s + 0.705·6-s − 0.377·7-s − 0.618·8-s + 0.333·9-s + 0.539·11-s + 0.284·12-s − 0.356·13-s − 0.461·14-s − 1.24·16-s − 0.242·17-s + 0.407·18-s − 0.218·19-s − 0.218·21-s + 0.659·22-s − 1.07·23-s − 0.357·24-s − 0.435·26-s + 0.192·27-s − 0.186·28-s − 0.760·29-s + 1.94·31-s − 0.908·32-s + 0.311·33-s − 0.296·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8925 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8925 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8925\)    =    \(3 \cdot 5^{2} \cdot 7 \cdot 17\)
Sign: $-1$
Analytic conductor: \(71.2664\)
Root analytic conductor: \(8.44194\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 8925,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - T \)
5 \( 1 \)
7 \( 1 + T \)
17 \( 1 + T \)
good2 \( 1 - 1.72T + 2T^{2} \)
11 \( 1 - 1.78T + 11T^{2} \)
13 \( 1 + 1.28T + 13T^{2} \)
19 \( 1 + 0.951T + 19T^{2} \)
23 \( 1 + 5.16T + 23T^{2} \)
29 \( 1 + 4.09T + 29T^{2} \)
31 \( 1 - 10.8T + 31T^{2} \)
37 \( 1 - 5.47T + 37T^{2} \)
41 \( 1 + 9.70T + 41T^{2} \)
43 \( 1 - 5.00T + 43T^{2} \)
47 \( 1 + 4.36T + 47T^{2} \)
53 \( 1 - 0.824T + 53T^{2} \)
59 \( 1 + 8.91T + 59T^{2} \)
61 \( 1 - 0.615T + 61T^{2} \)
67 \( 1 + 2.52T + 67T^{2} \)
71 \( 1 + 11.6T + 71T^{2} \)
73 \( 1 + 0.406T + 73T^{2} \)
79 \( 1 + 15.3T + 79T^{2} \)
83 \( 1 + 9.31T + 83T^{2} \)
89 \( 1 + 10.4T + 89T^{2} \)
97 \( 1 - 16.7T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.22709305243418698388367079664, −6.49161580225593886160971798741, −6.04558425870152905393771756333, −5.22432897483907840111511617556, −4.29501336884083020609417170984, −4.11199577036879346911113536562, −3.08898043450567527647080904676, −2.62103837196931493773360296520, −1.55674857376635966149479782348, 0, 1.55674857376635966149479782348, 2.62103837196931493773360296520, 3.08898043450567527647080904676, 4.11199577036879346911113536562, 4.29501336884083020609417170984, 5.22432897483907840111511617556, 6.04558425870152905393771756333, 6.49161580225593886160971798741, 7.22709305243418698388367079664

Graph of the $Z$-function along the critical line