Properties

Label 2-8925-1.1-c1-0-217
Degree $2$
Conductor $8925$
Sign $-1$
Analytic cond. $71.2664$
Root an. cond. $8.44194$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.384·2-s + 3-s − 1.85·4-s + 0.384·6-s − 7-s − 1.48·8-s + 9-s − 0.436·11-s − 1.85·12-s − 4.23·13-s − 0.384·14-s + 3.13·16-s − 17-s + 0.384·18-s + 4.11·19-s − 21-s − 0.167·22-s + 2.68·23-s − 1.48·24-s − 1.63·26-s + 27-s + 1.85·28-s + 0.858·29-s − 5.36·31-s + 4.17·32-s − 0.436·33-s − 0.384·34-s + ⋯
L(s)  = 1  + 0.272·2-s + 0.577·3-s − 0.925·4-s + 0.157·6-s − 0.377·7-s − 0.524·8-s + 0.333·9-s − 0.131·11-s − 0.534·12-s − 1.17·13-s − 0.102·14-s + 0.783·16-s − 0.242·17-s + 0.0907·18-s + 0.943·19-s − 0.218·21-s − 0.0357·22-s + 0.558·23-s − 0.302·24-s − 0.319·26-s + 0.192·27-s + 0.349·28-s + 0.159·29-s − 0.962·31-s + 0.737·32-s − 0.0759·33-s − 0.0660·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8925 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8925 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8925\)    =    \(3 \cdot 5^{2} \cdot 7 \cdot 17\)
Sign: $-1$
Analytic conductor: \(71.2664\)
Root analytic conductor: \(8.44194\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 8925,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - T \)
5 \( 1 \)
7 \( 1 + T \)
17 \( 1 + T \)
good2 \( 1 - 0.384T + 2T^{2} \)
11 \( 1 + 0.436T + 11T^{2} \)
13 \( 1 + 4.23T + 13T^{2} \)
19 \( 1 - 4.11T + 19T^{2} \)
23 \( 1 - 2.68T + 23T^{2} \)
29 \( 1 - 0.858T + 29T^{2} \)
31 \( 1 + 5.36T + 31T^{2} \)
37 \( 1 - 8.60T + 37T^{2} \)
41 \( 1 + 4.62T + 41T^{2} \)
43 \( 1 - 8.44T + 43T^{2} \)
47 \( 1 - 5.75T + 47T^{2} \)
53 \( 1 + 5.04T + 53T^{2} \)
59 \( 1 + 0.802T + 59T^{2} \)
61 \( 1 + 13.6T + 61T^{2} \)
67 \( 1 - 5.61T + 67T^{2} \)
71 \( 1 - 14.3T + 71T^{2} \)
73 \( 1 + 11.2T + 73T^{2} \)
79 \( 1 - 9.28T + 79T^{2} \)
83 \( 1 + 12.3T + 83T^{2} \)
89 \( 1 + 9.31T + 89T^{2} \)
97 \( 1 + 14.6T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.51874123253474829492529050023, −6.82870567039406496927511629889, −5.86108599083390272877826540105, −5.22927805095063930420378190618, −4.55760177839598900478601426261, −3.89588124341252050946810529810, −3.05712726367101173412226194911, −2.49377218745075540295614475648, −1.17544535111514538512508848795, 0, 1.17544535111514538512508848795, 2.49377218745075540295614475648, 3.05712726367101173412226194911, 3.89588124341252050946810529810, 4.55760177839598900478601426261, 5.22927805095063930420378190618, 5.86108599083390272877826540105, 6.82870567039406496927511629889, 7.51874123253474829492529050023

Graph of the $Z$-function along the critical line