L(s) = 1 | + 3·5-s + 3·25-s − 3·31-s + 3·47-s + 3·59-s − 64-s + 6·67-s − 3·89-s + 6·97-s − 3·103-s − 6·113-s − 125-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s − 9·155-s + 157-s + 163-s + 167-s + 173-s + 179-s + 181-s + 191-s + 193-s + ⋯ |
L(s) = 1 | + 3·5-s + 3·25-s − 3·31-s + 3·47-s + 3·59-s − 64-s + 6·67-s − 3·89-s + 6·97-s − 3·103-s − 6·113-s − 125-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s − 9·155-s + 157-s + 163-s + 167-s + 173-s + 179-s + 181-s + 191-s + 193-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{24} \cdot 11^{6}\right)^{s/2} \, \Gamma_{\C}(s)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{24} \cdot 11^{6}\right)^{s/2} \, \Gamma_{\C}(s)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.388512593\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.388512593\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 11 | \( 1 - T^{3} + T^{6} \) |
good | 2 | \( ( 1 - T^{3} + T^{6} )( 1 + T^{3} + T^{6} ) \) |
| 5 | \( ( 1 - T + T^{2} )^{3}( 1 - T^{3} + T^{6} ) \) |
| 7 | \( ( 1 - T^{3} + T^{6} )( 1 + T^{3} + T^{6} ) \) |
| 13 | \( ( 1 - T^{3} + T^{6} )( 1 + T^{3} + T^{6} ) \) |
| 17 | \( ( 1 - T + T^{2} )^{3}( 1 + T + T^{2} )^{3} \) |
| 19 | \( ( 1 - T + T^{2} )^{3}( 1 + T + T^{2} )^{3} \) |
| 23 | \( ( 1 - T^{3} + T^{6} )^{2} \) |
| 29 | \( ( 1 - T^{3} + T^{6} )( 1 + T^{3} + T^{6} ) \) |
| 31 | \( ( 1 + T + T^{2} )^{3}( 1 + T^{3} + T^{6} ) \) |
| 37 | \( ( 1 + T^{3} + T^{6} )^{2} \) |
| 41 | \( ( 1 - T^{3} + T^{6} )( 1 + T^{3} + T^{6} ) \) |
| 43 | \( ( 1 - T^{3} + T^{6} )( 1 + T^{3} + T^{6} ) \) |
| 47 | \( ( 1 - T + T^{2} )^{3}( 1 - T^{3} + T^{6} ) \) |
| 53 | \( ( 1 - T^{3} + T^{6} )^{2} \) |
| 59 | \( ( 1 - T + T^{2} )^{3}( 1 - T^{3} + T^{6} ) \) |
| 61 | \( ( 1 - T^{3} + T^{6} )( 1 + T^{3} + T^{6} ) \) |
| 67 | \( ( 1 - T )^{6}( 1 + T^{3} + T^{6} ) \) |
| 71 | \( ( 1 - T^{3} + T^{6} )^{2} \) |
| 73 | \( ( 1 - T + T^{2} )^{3}( 1 + T + T^{2} )^{3} \) |
| 79 | \( ( 1 - T^{3} + T^{6} )( 1 + T^{3} + T^{6} ) \) |
| 83 | \( ( 1 - T^{3} + T^{6} )( 1 + T^{3} + T^{6} ) \) |
| 89 | \( ( 1 + T )^{6}( 1 - T + T^{2} )^{3} \) |
| 97 | \( ( 1 - T )^{6}( 1 + T^{3} + T^{6} ) \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{12} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−5.52852026498495991259852775057, −5.46213675241123822009675448769, −5.42174303193735835372853489734, −5.13769385283179558923184805591, −5.06285736144392407177726421376, −5.05461895669355857688658682327, −4.96931224746665663039682908092, −4.21705594140991751703657195526, −4.08197706415534682286472529825, −4.05516295271595656206440941316, −3.98658661167708060874010629588, −3.92555916246389190828391454642, −3.70720460187797399164957601600, −3.21914569680158891187957791847, −3.17822935935729494166662329983, −3.00742638445069124948313363457, −2.47501260027218162498245284403, −2.40734038026332924882172110955, −2.34512936955244387043449387680, −2.18348318160314582980697635026, −2.04804590067180112763213581919, −1.83862428285239712791282220009, −1.32085345870502991971871489209, −1.19634339915372808604990390571, −1.05350538390653493851884988145,
1.05350538390653493851884988145, 1.19634339915372808604990390571, 1.32085345870502991971871489209, 1.83862428285239712791282220009, 2.04804590067180112763213581919, 2.18348318160314582980697635026, 2.34512936955244387043449387680, 2.40734038026332924882172110955, 2.47501260027218162498245284403, 3.00742638445069124948313363457, 3.17822935935729494166662329983, 3.21914569680158891187957791847, 3.70720460187797399164957601600, 3.92555916246389190828391454642, 3.98658661167708060874010629588, 4.05516295271595656206440941316, 4.08197706415534682286472529825, 4.21705594140991751703657195526, 4.96931224746665663039682908092, 5.05461895669355857688658682327, 5.06285736144392407177726421376, 5.13769385283179558923184805591, 5.42174303193735835372853489734, 5.46213675241123822009675448769, 5.52852026498495991259852775057
Plot not available for L-functions of degree greater than 10.