L(s) = 1 | + (−0.5 − 0.866i)2-s + (−1.67 − 0.448i)3-s + (−0.499 + 0.866i)4-s + (0.517 − 0.896i)5-s + (0.448 + 1.67i)6-s + 0.999·8-s + (2.59 + 1.50i)9-s − 1.03·10-s + (0.133 + 0.232i)11-s + (1.22 − 1.22i)12-s + (−0.896 + 1.55i)13-s + (−1.26 + 1.26i)15-s + (−0.5 − 0.866i)16-s − 6.83·17-s − 3i·18-s + 4.38·19-s + ⋯ |
L(s) = 1 | + (−0.353 − 0.612i)2-s + (−0.965 − 0.258i)3-s + (−0.249 + 0.433i)4-s + (0.231 − 0.400i)5-s + (0.183 + 0.683i)6-s + 0.353·8-s + (0.866 + 0.5i)9-s − 0.327·10-s + (0.0403 + 0.0699i)11-s + (0.353 − 0.353i)12-s + (−0.248 + 0.430i)13-s + (−0.327 + 0.327i)15-s + (−0.125 − 0.216i)16-s − 1.65·17-s − 0.707i·18-s + 1.00·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 882 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.984 - 0.173i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 882 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.984 - 0.173i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.753992 + 0.0659658i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.753992 + 0.0659658i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.5 + 0.866i)T \) |
| 3 | \( 1 + (1.67 + 0.448i)T \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (-0.517 + 0.896i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (-0.133 - 0.232i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (0.896 - 1.55i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + 6.83T + 17T^{2} \) |
| 19 | \( 1 - 4.38T + 19T^{2} \) |
| 23 | \( 1 + (2.73 - 4.73i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-2 - 3.46i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (3.34 - 5.79i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 - 7.46T + 37T^{2} \) |
| 41 | \( 1 + (-4.31 + 7.46i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (0.133 + 0.232i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (0.378 + 0.656i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 - 10.9T + 53T^{2} \) |
| 59 | \( 1 + (-0.637 + 1.10i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-6.31 - 10.9i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (6.23 - 10.7i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 9.46T + 71T^{2} \) |
| 73 | \( 1 - 5.41T + 73T^{2} \) |
| 79 | \( 1 + (4.46 + 7.73i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (3.29 + 5.70i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 - 7.07T + 89T^{2} \) |
| 97 | \( 1 + (-9.07 - 15.7i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.28468767575549430739327961533, −9.377286193115152714292858283517, −8.763105119949601802951858151023, −7.46287213949994573492853718705, −6.87713216923467108660503593179, −5.66825256775537495953691054785, −4.87634562125656201796907959292, −3.87900864798350283206614407965, −2.26844306103258841254698583377, −1.13459631287917257943970066423,
0.54861880055944635791423839209, 2.41172285243084854084617369788, 4.12950857176635355555978626560, 4.92369514727014052761543797924, 6.02731664634777530585787350985, 6.49012830520302905574371283107, 7.41303431914098632024026031858, 8.366554680255480472005408953143, 9.490461726087790192499110901133, 9.996074151092108531999633133523