Properties

Label 2-882-9.4-c1-0-10
Degree $2$
Conductor $882$
Sign $0.984 - 0.173i$
Analytic cond. $7.04280$
Root an. cond. $2.65382$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.5 − 0.866i)2-s + (−1.67 − 0.448i)3-s + (−0.499 + 0.866i)4-s + (0.517 − 0.896i)5-s + (0.448 + 1.67i)6-s + 0.999·8-s + (2.59 + 1.50i)9-s − 1.03·10-s + (0.133 + 0.232i)11-s + (1.22 − 1.22i)12-s + (−0.896 + 1.55i)13-s + (−1.26 + 1.26i)15-s + (−0.5 − 0.866i)16-s − 6.83·17-s − 3i·18-s + 4.38·19-s + ⋯
L(s)  = 1  + (−0.353 − 0.612i)2-s + (−0.965 − 0.258i)3-s + (−0.249 + 0.433i)4-s + (0.231 − 0.400i)5-s + (0.183 + 0.683i)6-s + 0.353·8-s + (0.866 + 0.5i)9-s − 0.327·10-s + (0.0403 + 0.0699i)11-s + (0.353 − 0.353i)12-s + (−0.248 + 0.430i)13-s + (−0.327 + 0.327i)15-s + (−0.125 − 0.216i)16-s − 1.65·17-s − 0.707i·18-s + 1.00·19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 882 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.984 - 0.173i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 882 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.984 - 0.173i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(882\)    =    \(2 \cdot 3^{2} \cdot 7^{2}\)
Sign: $0.984 - 0.173i$
Analytic conductor: \(7.04280\)
Root analytic conductor: \(2.65382\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{882} (589, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 882,\ (\ :1/2),\ 0.984 - 0.173i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.753992 + 0.0659658i\)
\(L(\frac12)\) \(\approx\) \(0.753992 + 0.0659658i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.5 + 0.866i)T \)
3 \( 1 + (1.67 + 0.448i)T \)
7 \( 1 \)
good5 \( 1 + (-0.517 + 0.896i)T + (-2.5 - 4.33i)T^{2} \)
11 \( 1 + (-0.133 - 0.232i)T + (-5.5 + 9.52i)T^{2} \)
13 \( 1 + (0.896 - 1.55i)T + (-6.5 - 11.2i)T^{2} \)
17 \( 1 + 6.83T + 17T^{2} \)
19 \( 1 - 4.38T + 19T^{2} \)
23 \( 1 + (2.73 - 4.73i)T + (-11.5 - 19.9i)T^{2} \)
29 \( 1 + (-2 - 3.46i)T + (-14.5 + 25.1i)T^{2} \)
31 \( 1 + (3.34 - 5.79i)T + (-15.5 - 26.8i)T^{2} \)
37 \( 1 - 7.46T + 37T^{2} \)
41 \( 1 + (-4.31 + 7.46i)T + (-20.5 - 35.5i)T^{2} \)
43 \( 1 + (0.133 + 0.232i)T + (-21.5 + 37.2i)T^{2} \)
47 \( 1 + (0.378 + 0.656i)T + (-23.5 + 40.7i)T^{2} \)
53 \( 1 - 10.9T + 53T^{2} \)
59 \( 1 + (-0.637 + 1.10i)T + (-29.5 - 51.0i)T^{2} \)
61 \( 1 + (-6.31 - 10.9i)T + (-30.5 + 52.8i)T^{2} \)
67 \( 1 + (6.23 - 10.7i)T + (-33.5 - 58.0i)T^{2} \)
71 \( 1 - 9.46T + 71T^{2} \)
73 \( 1 - 5.41T + 73T^{2} \)
79 \( 1 + (4.46 + 7.73i)T + (-39.5 + 68.4i)T^{2} \)
83 \( 1 + (3.29 + 5.70i)T + (-41.5 + 71.8i)T^{2} \)
89 \( 1 - 7.07T + 89T^{2} \)
97 \( 1 + (-9.07 - 15.7i)T + (-48.5 + 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.28468767575549430739327961533, −9.377286193115152714292858283517, −8.763105119949601802951858151023, −7.46287213949994573492853718705, −6.87713216923467108660503593179, −5.66825256775537495953691054785, −4.87634562125656201796907959292, −3.87900864798350283206614407965, −2.26844306103258841254698583377, −1.13459631287917257943970066423, 0.54861880055944635791423839209, 2.41172285243084854084617369788, 4.12950857176635355555978626560, 4.92369514727014052761543797924, 6.02731664634777530585787350985, 6.49012830520302905574371283107, 7.41303431914098632024026031858, 8.366554680255480472005408953143, 9.490461726087790192499110901133, 9.996074151092108531999633133523

Graph of the $Z$-function along the critical line