L(s) = 1 | + 2-s + (−1.67 + 0.448i)3-s + 4-s + (1.93 + 3.34i)5-s + (−1.67 + 0.448i)6-s + 8-s + (2.59 − 1.50i)9-s + (1.93 + 3.34i)10-s + (1.86 − 3.23i)11-s + (−1.67 + 0.448i)12-s + (3.34 − 5.79i)13-s + (−4.73 − 4.73i)15-s + 16-s + (2.70 + 4.69i)17-s + (2.59 − 1.50i)18-s + (−1.48 + 2.56i)19-s + ⋯ |
L(s) = 1 | + 0.707·2-s + (−0.965 + 0.258i)3-s + 0.5·4-s + (0.863 + 1.49i)5-s + (−0.683 + 0.183i)6-s + 0.353·8-s + (0.866 − 0.5i)9-s + (0.610 + 1.05i)10-s + (0.562 − 0.974i)11-s + (−0.482 + 0.129i)12-s + (0.928 − 1.60i)13-s + (−1.22 − 1.22i)15-s + 0.250·16-s + (0.656 + 1.13i)17-s + (0.612 − 0.353i)18-s + (−0.340 + 0.589i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 882 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.623 - 0.781i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 882 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.623 - 0.781i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.03296 + 0.978913i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.03296 + 0.978913i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - T \) |
| 3 | \( 1 + (1.67 - 0.448i)T \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (-1.93 - 3.34i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (-1.86 + 3.23i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-3.34 + 5.79i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (-2.70 - 4.69i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (1.48 - 2.56i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-0.732 - 1.26i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-2 - 3.46i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 1.79T + 31T^{2} \) |
| 37 | \( 1 + (0.267 - 0.464i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (0.637 - 1.10i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (1.86 + 3.23i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + 10.5T + 47T^{2} \) |
| 53 | \( 1 + (-1.46 - 2.53i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 - 8.62T + 59T^{2} \) |
| 61 | \( 1 + 6.96T + 61T^{2} \) |
| 67 | \( 1 - 5.53T + 67T^{2} \) |
| 71 | \( 1 - 2.53T + 71T^{2} \) |
| 73 | \( 1 + (3.41 + 5.91i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + 4.92T + 79T^{2} \) |
| 83 | \( 1 + (8.95 + 15.5i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (-3.53 + 6.12i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (2.94 + 5.10i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.45954559545608798999132481028, −9.989709728101438548633114677811, −8.505755626992545171005942245685, −7.36824059475691135330299889999, −6.20286857286500788167509872149, −6.12625795946792418949553750196, −5.30570888931168715737525271309, −3.65361718003387974963259365383, −3.21637288951050862899342757740, −1.48543453054798297276431184004,
1.18370013757149076263716823460, 2.05326011883508828501889527970, 4.18699049159293504617610676629, 4.74607521641751937160569201862, 5.48687926608263649027730822396, 6.45477565536761209812729318389, 7.01080113945374452067046098898, 8.380276034979767713615271730239, 9.418111633204279047022294313820, 9.858068204192527372272313626609