L(s) = 1 | + 1.71·3-s + (4.21 − 2.69i)5-s + 3.18·7-s − 6.05·9-s + 3.31i·11-s − 14.7i·13-s + (7.22 − 4.61i)15-s + 13.1i·17-s − 26.0i·19-s + 5.46·21-s + 41.9·23-s + (10.5 − 22.6i)25-s − 25.8·27-s + 7.26·29-s − 34.9i·31-s + ⋯ |
L(s) = 1 | + 0.571·3-s + (0.842 − 0.538i)5-s + 0.455·7-s − 0.673·9-s + 0.301i·11-s − 1.13i·13-s + (0.481 − 0.307i)15-s + 0.776i·17-s − 1.36i·19-s + 0.260·21-s + 1.82·23-s + (0.420 − 0.907i)25-s − 0.956·27-s + 0.250·29-s − 1.12i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 880 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.538 + 0.842i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 880 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.538 + 0.842i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(2.639219740\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.639219740\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (-4.21 + 2.69i)T \) |
| 11 | \( 1 - 3.31iT \) |
good | 3 | \( 1 - 1.71T + 9T^{2} \) |
| 7 | \( 1 - 3.18T + 49T^{2} \) |
| 13 | \( 1 + 14.7iT - 169T^{2} \) |
| 17 | \( 1 - 13.1iT - 289T^{2} \) |
| 19 | \( 1 + 26.0iT - 361T^{2} \) |
| 23 | \( 1 - 41.9T + 529T^{2} \) |
| 29 | \( 1 - 7.26T + 841T^{2} \) |
| 31 | \( 1 + 34.9iT - 961T^{2} \) |
| 37 | \( 1 + 6.70iT - 1.36e3T^{2} \) |
| 41 | \( 1 - 39.4T + 1.68e3T^{2} \) |
| 43 | \( 1 + 2.00T + 1.84e3T^{2} \) |
| 47 | \( 1 - 26.5T + 2.20e3T^{2} \) |
| 53 | \( 1 - 52.0iT - 2.80e3T^{2} \) |
| 59 | \( 1 + 58.6iT - 3.48e3T^{2} \) |
| 61 | \( 1 + 46.1T + 3.72e3T^{2} \) |
| 67 | \( 1 - 20.6T + 4.48e3T^{2} \) |
| 71 | \( 1 - 5.52iT - 5.04e3T^{2} \) |
| 73 | \( 1 - 38.9iT - 5.32e3T^{2} \) |
| 79 | \( 1 + 97.1iT - 6.24e3T^{2} \) |
| 83 | \( 1 + 24.7T + 6.88e3T^{2} \) |
| 89 | \( 1 - 50.4T + 7.92e3T^{2} \) |
| 97 | \( 1 - 149. iT - 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.570205674576287889182375674223, −8.981960887329031288035580587582, −8.280148690537455432103230328129, −7.42671870846654937361574053263, −6.20937431802737710161704380372, −5.37398180555666032566145351825, −4.57753607336799472360928596945, −3.09844719129354773923441832555, −2.25832733034843631115462500618, −0.842767122619228467098339042622,
1.46436822745081993674772486283, 2.58525093472741281342921478916, 3.43670037769146809897101124854, 4.83033735410269911363533176645, 5.74015501438156148454814898123, 6.67422049635511458378137319998, 7.50752339180440441617172016628, 8.608658777582909730699437669044, 9.138239615785386514732384264382, 9.961425443019140880881367948915