Properties

Label 2-880-220.219-c1-0-9
Degree $2$
Conductor $880$
Sign $0.741 - 0.670i$
Analytic cond. $7.02683$
Root an. cond. $2.65081$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + (−1.5 − 1.65i)5-s − 2·9-s + 3.31i·11-s + (1.5 + 1.65i)15-s + 9·23-s + (−0.5 + 4.97i)25-s + 5·27-s + 9.94i·31-s − 3.31i·33-s − 9.94i·37-s + (3 + 3.31i)45-s + 12·47-s + 7·49-s + 13.2i·53-s + ⋯
L(s)  = 1  − 0.577·3-s + (−0.670 − 0.741i)5-s − 0.666·9-s + 1.00i·11-s + (0.387 + 0.428i)15-s + 1.87·23-s + (−0.100 + 0.994i)25-s + 0.962·27-s + 1.78i·31-s − 0.577i·33-s − 1.63i·37-s + (0.447 + 0.494i)45-s + 1.75·47-s + 49-s + 1.82i·53-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 880 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.741 - 0.670i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 880 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.741 - 0.670i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(880\)    =    \(2^{4} \cdot 5 \cdot 11\)
Sign: $0.741 - 0.670i$
Analytic conductor: \(7.02683\)
Root analytic conductor: \(2.65081\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{880} (879, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 880,\ (\ :1/2),\ 0.741 - 0.670i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.822813 + 0.316923i\)
\(L(\frac12)\) \(\approx\) \(0.822813 + 0.316923i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + (1.5 + 1.65i)T \)
11 \( 1 - 3.31iT \)
good3 \( 1 + T + 3T^{2} \)
7 \( 1 - 7T^{2} \)
13 \( 1 + 13T^{2} \)
17 \( 1 + 17T^{2} \)
19 \( 1 + 19T^{2} \)
23 \( 1 - 9T + 23T^{2} \)
29 \( 1 - 29T^{2} \)
31 \( 1 - 9.94iT - 31T^{2} \)
37 \( 1 + 9.94iT - 37T^{2} \)
41 \( 1 - 41T^{2} \)
43 \( 1 - 43T^{2} \)
47 \( 1 - 12T + 47T^{2} \)
53 \( 1 - 13.2iT - 53T^{2} \)
59 \( 1 - 3.31iT - 59T^{2} \)
61 \( 1 - 61T^{2} \)
67 \( 1 + 13T + 67T^{2} \)
71 \( 1 - 16.5iT - 71T^{2} \)
73 \( 1 + 73T^{2} \)
79 \( 1 + 79T^{2} \)
83 \( 1 - 83T^{2} \)
89 \( 1 - 9T + 89T^{2} \)
97 \( 1 - 9.94iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.49750899900514164184627894364, −9.045662088689659480756202590920, −8.862313002896001452782072213065, −7.54264756619224719872674404325, −6.97075687650188501283210541550, −5.66366374483449195480238652612, −4.99551092522424226964629754608, −4.10546097631714454915953794284, −2.77844053938080197046968206459, −1.06203982991045346899642712354, 0.57308266221351425213032390115, 2.69755607106233272800873131763, 3.51283509510263736619209835126, 4.75970576791150073815607932632, 5.79960484808337311986476830026, 6.51077679115038139650297938396, 7.44316089695929296856238710178, 8.338834303742206967607410489226, 9.104626914114269003628583249678, 10.32467223226139204382641656429

Graph of the $Z$-function along the critical line