| L(s) = 1 | + (−0.395 − 0.395i)3-s + (−0.0577 − 2.23i)5-s + (2.57 + 2.57i)7-s − 2.68i·9-s + (2.35 − 2.33i)11-s + (−1.81 + 1.81i)13-s + (−0.861 + 0.906i)15-s + (−2.63 − 2.63i)17-s + 4.84·19-s − 2.03i·21-s + (0.648 + 0.648i)23-s + (−4.99 + 0.258i)25-s + (−2.24 + 2.24i)27-s + 9.19·29-s − 9.88·31-s + ⋯ |
| L(s) = 1 | + (−0.228 − 0.228i)3-s + (−0.0258 − 0.999i)5-s + (0.973 + 0.973i)7-s − 0.895i·9-s + (0.711 − 0.702i)11-s + (−0.502 + 0.502i)13-s + (−0.222 + 0.234i)15-s + (−0.640 − 0.640i)17-s + 1.11·19-s − 0.444i·21-s + (0.135 + 0.135i)23-s + (−0.998 + 0.0516i)25-s + (−0.432 + 0.432i)27-s + 1.70·29-s − 1.77·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 880 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.248 + 0.968i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 880 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.248 + 0.968i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.22769 - 0.952258i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.22769 - 0.952258i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 5 | \( 1 + (0.0577 + 2.23i)T \) |
| 11 | \( 1 + (-2.35 + 2.33i)T \) |
| good | 3 | \( 1 + (0.395 + 0.395i)T + 3iT^{2} \) |
| 7 | \( 1 + (-2.57 - 2.57i)T + 7iT^{2} \) |
| 13 | \( 1 + (1.81 - 1.81i)T - 13iT^{2} \) |
| 17 | \( 1 + (2.63 + 2.63i)T + 17iT^{2} \) |
| 19 | \( 1 - 4.84T + 19T^{2} \) |
| 23 | \( 1 + (-0.648 - 0.648i)T + 23iT^{2} \) |
| 29 | \( 1 - 9.19T + 29T^{2} \) |
| 31 | \( 1 + 9.88T + 31T^{2} \) |
| 37 | \( 1 + (-7.37 + 7.37i)T - 37iT^{2} \) |
| 41 | \( 1 + 5.37iT - 41T^{2} \) |
| 43 | \( 1 + (2.39 - 2.39i)T - 43iT^{2} \) |
| 47 | \( 1 + (-2.29 + 2.29i)T - 47iT^{2} \) |
| 53 | \( 1 + (3.34 + 3.34i)T + 53iT^{2} \) |
| 59 | \( 1 + 11.1iT - 59T^{2} \) |
| 61 | \( 1 + 6.46iT - 61T^{2} \) |
| 67 | \( 1 + (-0.909 + 0.909i)T - 67iT^{2} \) |
| 71 | \( 1 - 5.95T + 71T^{2} \) |
| 73 | \( 1 + (-1.99 + 1.99i)T - 73iT^{2} \) |
| 79 | \( 1 + 7.61T + 79T^{2} \) |
| 83 | \( 1 + (4.50 - 4.50i)T - 83iT^{2} \) |
| 89 | \( 1 - 2.85iT - 89T^{2} \) |
| 97 | \( 1 + (8.73 - 8.73i)T - 97iT^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.541078898353642754315885322202, −9.140409237284134156829193039892, −8.477217306082113543602167085388, −7.46228243445745384955676225054, −6.40842032936986553205200272885, −5.47302099829614784241228230840, −4.81020641706679037661964008731, −3.63272027199325003653425434052, −2.09257852035320741803609276292, −0.845438490315405683130615648183,
1.54323392775889711349739453845, 2.84633538232839064674259610019, 4.19828955401465451135937291576, 4.81061146188552581242997666233, 6.00316984303716920937004103725, 7.16674537141498159793285291438, 7.52754012875105515827192339572, 8.483347535436604543761701943051, 9.883856577934323842706726898405, 10.28959461007637436096882280951