| L(s) = 1 | + (0.185 + 0.185i)3-s + (−2.05 + 0.892i)5-s + (0.202 + 0.202i)7-s − 2.93i·9-s + (2.64 − 1.99i)11-s + (−3.54 + 3.54i)13-s + (−0.546 − 0.214i)15-s + (2.99 + 2.99i)17-s + 7.13·19-s + 0.0752i·21-s + (3.44 + 3.44i)23-s + (3.40 − 3.65i)25-s + (1.10 − 1.10i)27-s − 3.59·29-s + 6.71·31-s + ⋯ |
| L(s) = 1 | + (0.107 + 0.107i)3-s + (−0.916 + 0.399i)5-s + (0.0765 + 0.0765i)7-s − 0.977i·9-s + (0.798 − 0.601i)11-s + (−0.984 + 0.984i)13-s + (−0.141 − 0.0554i)15-s + (0.725 + 0.725i)17-s + 1.63·19-s + 0.0164i·21-s + (0.718 + 0.718i)23-s + (0.681 − 0.731i)25-s + (0.211 − 0.211i)27-s − 0.667·29-s + 1.20·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 880 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.876 - 0.481i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 880 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.876 - 0.481i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.38671 + 0.355758i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.38671 + 0.355758i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 5 | \( 1 + (2.05 - 0.892i)T \) |
| 11 | \( 1 + (-2.64 + 1.99i)T \) |
| good | 3 | \( 1 + (-0.185 - 0.185i)T + 3iT^{2} \) |
| 7 | \( 1 + (-0.202 - 0.202i)T + 7iT^{2} \) |
| 13 | \( 1 + (3.54 - 3.54i)T - 13iT^{2} \) |
| 17 | \( 1 + (-2.99 - 2.99i)T + 17iT^{2} \) |
| 19 | \( 1 - 7.13T + 19T^{2} \) |
| 23 | \( 1 + (-3.44 - 3.44i)T + 23iT^{2} \) |
| 29 | \( 1 + 3.59T + 29T^{2} \) |
| 31 | \( 1 - 6.71T + 31T^{2} \) |
| 37 | \( 1 + (-0.924 + 0.924i)T - 37iT^{2} \) |
| 41 | \( 1 - 11.3iT - 41T^{2} \) |
| 43 | \( 1 + (8.17 - 8.17i)T - 43iT^{2} \) |
| 47 | \( 1 + (-6.13 + 6.13i)T - 47iT^{2} \) |
| 53 | \( 1 + (-8.77 - 8.77i)T + 53iT^{2} \) |
| 59 | \( 1 - 4.44iT - 59T^{2} \) |
| 61 | \( 1 - 0.601iT - 61T^{2} \) |
| 67 | \( 1 + (-1.46 + 1.46i)T - 67iT^{2} \) |
| 71 | \( 1 + 8.47T + 71T^{2} \) |
| 73 | \( 1 + (-6.69 + 6.69i)T - 73iT^{2} \) |
| 79 | \( 1 - 10.3T + 79T^{2} \) |
| 83 | \( 1 + (-3.13 + 3.13i)T - 83iT^{2} \) |
| 89 | \( 1 + 4.12iT - 89T^{2} \) |
| 97 | \( 1 + (-5.71 + 5.71i)T - 97iT^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.01905498927539528323236869956, −9.422026423450605010978999443696, −8.564620522864668689019961166015, −7.57710743591293837792825568651, −6.88873088225404164203795151194, −5.98435104275583384765608829610, −4.72099999556630695557289566745, −3.70057397520530897633864384304, −3.04146340362219182202494025987, −1.13094802073193870523743377204,
0.894804447717804948862847978006, 2.57040616433081619920369956250, 3.67697193410298168446559907221, 4.91478680048679533923964308859, 5.31252108743274498886415537822, 7.05982382335840725970918522311, 7.48734023739384712708779320218, 8.225494188836188613317599773598, 9.242709363475544465339084649939, 10.04481869760300572603101164612