Properties

Label 8-880e4-1.1-c1e4-0-11
Degree $8$
Conductor $599695360000$
Sign $1$
Analytic cond. $2438.03$
Root an. cond. $2.65081$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·5-s + 5·9-s + 4·11-s + 16·19-s + 5·25-s − 12·29-s − 2·31-s + 12·41-s − 15·45-s + 4·49-s − 12·55-s − 18·59-s + 20·61-s + 6·71-s + 28·79-s + 9·81-s + 6·89-s − 48·95-s + 20·99-s + 24·101-s − 40·109-s + 10·121-s − 18·125-s + 127-s + 131-s + 137-s + 139-s + ⋯
L(s)  = 1  − 1.34·5-s + 5/3·9-s + 1.20·11-s + 3.67·19-s + 25-s − 2.22·29-s − 0.359·31-s + 1.87·41-s − 2.23·45-s + 4/7·49-s − 1.61·55-s − 2.34·59-s + 2.56·61-s + 0.712·71-s + 3.15·79-s + 81-s + 0.635·89-s − 4.92·95-s + 2.01·99-s + 2.38·101-s − 3.83·109-s + 0.909·121-s − 1.60·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 5^{4} \cdot 11^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 5^{4} \cdot 11^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{16} \cdot 5^{4} \cdot 11^{4}\)
Sign: $1$
Analytic conductor: \(2438.03\)
Root analytic conductor: \(2.65081\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{16} \cdot 5^{4} \cdot 11^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(4.069559505\)
\(L(\frac12)\) \(\approx\) \(4.069559505\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5$C_2^2$ \( 1 + 3 T + 4 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
11$C_1$ \( ( 1 - T )^{4} \)
good3$C_2^2$$\times$$C_2^2$ \( ( 1 - T - 2 T^{2} - p T^{3} + p^{2} T^{4} )( 1 + T - 2 T^{2} + p T^{3} + p^{2} T^{4} ) \) 4.3.a_af_a_q
7$C_2$ \( ( 1 - 4 T + p T^{2} )^{2}( 1 + 4 T + p T^{2} )^{2} \) 4.7.a_ae_a_dy
13$C_2$ \( ( 1 - p T^{2} )^{4} \) 4.13.a_aca_a_bna
17$D_4\times C_2$ \( 1 - 40 T^{2} + 846 T^{4} - 40 p^{2} T^{6} + p^{4} T^{8} \) 4.17.a_abo_a_bgo
19$C_2$ \( ( 1 - 4 T + p T^{2} )^{4} \) 4.19.aq_gq_absy_izm
23$D_4\times C_2$ \( 1 - 85 T^{2} + 2856 T^{4} - 85 p^{2} T^{6} + p^{4} T^{8} \) 4.23.a_adh_a_efw
29$D_{4}$ \( ( 1 + 6 T + 34 T^{2} + 6 p T^{3} + p^{2} T^{4} )^{2} \) 4.29.m_ea_bdc_hhm
31$D_{4}$ \( ( 1 + T + 54 T^{2} + p T^{3} + p^{2} T^{4} )^{2} \) 4.31.c_ef_go_hgm
37$C_2^2$$\times$$C_2^2$ \( ( 1 - 7 T + 12 T^{2} - 7 p T^{3} + p^{2} T^{4} )( 1 + 7 T + 12 T^{2} + 7 p T^{3} + p^{2} T^{4} ) \) 4.37.a_az_a_abcq
41$D_{4}$ \( ( 1 - 6 T + 58 T^{2} - 6 p T^{3} + p^{2} T^{4} )^{2} \) 4.41.am_fw_abts_oig
43$C_2^2$ \( ( 1 - 74 T^{2} + p^{2} T^{4} )^{2} \) 4.43.a_afs_a_now
47$C_2$ \( ( 1 - 12 T + p T^{2} )^{2}( 1 + 12 T + p T^{2} )^{2} \) 4.47.a_adw_a_kgc
53$D_4\times C_2$ \( 1 - 100 T^{2} + 6006 T^{4} - 100 p^{2} T^{6} + p^{4} T^{8} \) 4.53.a_adw_a_ixa
59$D_{4}$ \( ( 1 + 9 T + 130 T^{2} + 9 p T^{3} + p^{2} T^{4} )^{2} \) 4.59.s_nd_faw_bxlk
61$D_{4}$ \( ( 1 - 10 T + 114 T^{2} - 10 p T^{3} + p^{2} T^{4} )^{2} \) 4.61.au_mq_afeq_bwhi
67$D_4\times C_2$ \( 1 - 181 T^{2} + 15312 T^{4} - 181 p^{2} T^{6} + p^{4} T^{8} \) 4.67.a_agz_a_wqy
71$D_{4}$ \( ( 1 - 3 T + 70 T^{2} - 3 p T^{3} + p^{2} T^{4} )^{2} \) 4.71.ag_ft_abgo_ybk
73$C_2^2$ \( ( 1 - 98 T^{2} + p^{2} T^{4} )^{2} \) 4.73.a_aho_a_bdzi
79$D_{4}$ \( ( 1 - 14 T + 174 T^{2} - 14 p T^{3} + p^{2} T^{4} )^{2} \) 4.79.abc_uy_akmm_efbq
83$C_2^2$ \( ( 1 - 122 T^{2} + p^{2} T^{4} )^{2} \) 4.83.a_ajk_a_bqkk
89$D_{4}$ \( ( 1 - 3 T + 172 T^{2} - 3 p T^{3} + p^{2} T^{4} )^{2} \) 4.89.ag_np_acig_crou
97$D_4\times C_2$ \( 1 - 337 T^{2} + 47136 T^{4} - 337 p^{2} T^{6} + p^{4} T^{8} \) 4.97.a_amz_a_crsy
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.48250272987207871630447717625, −7.01064618409550120197734454941, −6.90666079725285702805107729196, −6.70984283365105840440582208021, −6.53818820367562328796983964398, −6.13258299604999053346447391076, −5.93548737642554884987300680562, −5.48123434591653625900793415515, −5.33353134253557802817719305476, −5.27603629498225512980487398888, −5.00840114273274858489610625466, −4.52081601147585233230808931139, −4.41534783016159892132341730645, −3.97798413278449709741089876212, −3.93611836399217042815123225186, −3.68674720568590558888193442510, −3.54663854481281249684859923722, −3.09593886255877725277486805576, −2.96343353590840836911262861828, −2.49998602546216877371964709139, −1.87971754577122038881323764731, −1.80244748863381436360324815927, −1.26853743653221450721012498261, −0.881509004708087573268278527555, −0.66184193945979415666324925277, 0.66184193945979415666324925277, 0.881509004708087573268278527555, 1.26853743653221450721012498261, 1.80244748863381436360324815927, 1.87971754577122038881323764731, 2.49998602546216877371964709139, 2.96343353590840836911262861828, 3.09593886255877725277486805576, 3.54663854481281249684859923722, 3.68674720568590558888193442510, 3.93611836399217042815123225186, 3.97798413278449709741089876212, 4.41534783016159892132341730645, 4.52081601147585233230808931139, 5.00840114273274858489610625466, 5.27603629498225512980487398888, 5.33353134253557802817719305476, 5.48123434591653625900793415515, 5.93548737642554884987300680562, 6.13258299604999053346447391076, 6.53818820367562328796983964398, 6.70984283365105840440582208021, 6.90666079725285702805107729196, 7.01064618409550120197734454941, 7.48250272987207871630447717625

Graph of the $Z$-function along the critical line