Properties

Label 2-87-1.1-c5-0-8
Degree $2$
Conductor $87$
Sign $1$
Analytic cond. $13.9533$
Root an. cond. $3.73542$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8.42·2-s + 9·3-s + 38.9·4-s + 57.0·5-s − 75.7·6-s + 139.·7-s − 58.3·8-s + 81·9-s − 480.·10-s + 317.·11-s + 350.·12-s − 613.·13-s − 1.17e3·14-s + 513.·15-s − 754.·16-s − 240.·17-s − 682.·18-s − 199.·19-s + 2.22e3·20-s + 1.25e3·21-s − 2.67e3·22-s + 3.93e3·23-s − 525.·24-s + 130.·25-s + 5.16e3·26-s + 729·27-s + 5.44e3·28-s + ⋯
L(s)  = 1  − 1.48·2-s + 0.577·3-s + 1.21·4-s + 1.02·5-s − 0.859·6-s + 1.07·7-s − 0.322·8-s + 0.333·9-s − 1.51·10-s + 0.792·11-s + 0.702·12-s − 1.00·13-s − 1.60·14-s + 0.589·15-s − 0.736·16-s − 0.201·17-s − 0.496·18-s − 0.126·19-s + 1.24·20-s + 0.623·21-s − 1.17·22-s + 1.55·23-s − 0.186·24-s + 0.0416·25-s + 1.49·26-s + 0.192·27-s + 1.31·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 87 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 87 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(87\)    =    \(3 \cdot 29\)
Sign: $1$
Analytic conductor: \(13.9533\)
Root analytic conductor: \(3.73542\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 87,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(1.446384926\)
\(L(\frac12)\) \(\approx\) \(1.446384926\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - 9T \)
29 \( 1 + 841T \)
good2 \( 1 + 8.42T + 32T^{2} \)
5 \( 1 - 57.0T + 3.12e3T^{2} \)
7 \( 1 - 139.T + 1.68e4T^{2} \)
11 \( 1 - 317.T + 1.61e5T^{2} \)
13 \( 1 + 613.T + 3.71e5T^{2} \)
17 \( 1 + 240.T + 1.41e6T^{2} \)
19 \( 1 + 199.T + 2.47e6T^{2} \)
23 \( 1 - 3.93e3T + 6.43e6T^{2} \)
31 \( 1 - 8.99e3T + 2.86e7T^{2} \)
37 \( 1 + 1.63e3T + 6.93e7T^{2} \)
41 \( 1 - 7.86e3T + 1.15e8T^{2} \)
43 \( 1 + 1.59e4T + 1.47e8T^{2} \)
47 \( 1 - 1.04e4T + 2.29e8T^{2} \)
53 \( 1 - 4.33e3T + 4.18e8T^{2} \)
59 \( 1 - 2.32e4T + 7.14e8T^{2} \)
61 \( 1 + 3.76e4T + 8.44e8T^{2} \)
67 \( 1 + 6.64e3T + 1.35e9T^{2} \)
71 \( 1 + 3.22e4T + 1.80e9T^{2} \)
73 \( 1 - 7.11e4T + 2.07e9T^{2} \)
79 \( 1 - 9.59e4T + 3.07e9T^{2} \)
83 \( 1 + 3.93e4T + 3.93e9T^{2} \)
89 \( 1 - 2.66e4T + 5.58e9T^{2} \)
97 \( 1 - 1.11e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.41672048567187819102552476486, −11.80098147923313845515279461918, −10.62516117102216497707786978872, −9.640035565688429866631894265511, −8.911808765211502410540227565676, −7.86484499367927754059477526875, −6.71757990585547941010166695158, −4.81287863514408280621142995424, −2.32798279090917205335546572273, −1.21863244724271810270813613623, 1.21863244724271810270813613623, 2.32798279090917205335546572273, 4.81287863514408280621142995424, 6.71757990585547941010166695158, 7.86484499367927754059477526875, 8.911808765211502410540227565676, 9.640035565688429866631894265511, 10.62516117102216497707786978872, 11.80098147923313845515279461918, 13.41672048567187819102552476486

Graph of the $Z$-function along the critical line