L(s) = 1 | − 5.73·2-s + (7.98 + 4.14i)3-s + 16.9·4-s + 47.2i·5-s + (−45.8 − 23.7i)6-s − 77.2·7-s − 5.28·8-s + (46.6 + 66.2i)9-s − 270. i·10-s + 9.19·11-s + (135. + 70.1i)12-s + 132.·13-s + 443.·14-s + (−195. + 377. i)15-s − 240.·16-s − 152.·17-s + ⋯ |
L(s) = 1 | − 1.43·2-s + (0.887 + 0.460i)3-s + 1.05·4-s + 1.88i·5-s + (−1.27 − 0.660i)6-s − 1.57·7-s − 0.0825·8-s + (0.576 + 0.817i)9-s − 2.70i·10-s + 0.0760·11-s + (0.938 + 0.486i)12-s + 0.785·13-s + 2.26·14-s + (−0.869 + 1.67i)15-s − 0.939·16-s − 0.526·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 87 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.991 + 0.128i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 87 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (-0.991 + 0.128i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{5}{2})\) |
\(\approx\) |
\(0.0343755 - 0.532317i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0343755 - 0.532317i\) |
\(L(3)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-7.98 - 4.14i)T \) |
| 29 | \( 1 + (690. - 479. i)T \) |
good | 2 | \( 1 + 5.73T + 16T^{2} \) |
| 5 | \( 1 - 47.2iT - 625T^{2} \) |
| 7 | \( 1 + 77.2T + 2.40e3T^{2} \) |
| 11 | \( 1 - 9.19T + 1.46e4T^{2} \) |
| 13 | \( 1 - 132.T + 2.85e4T^{2} \) |
| 17 | \( 1 + 152.T + 8.35e4T^{2} \) |
| 19 | \( 1 + 482. iT - 1.30e5T^{2} \) |
| 23 | \( 1 + 175. iT - 2.79e5T^{2} \) |
| 31 | \( 1 - 848. iT - 9.23e5T^{2} \) |
| 37 | \( 1 - 177. iT - 1.87e6T^{2} \) |
| 41 | \( 1 + 1.78e3T + 2.82e6T^{2} \) |
| 43 | \( 1 + 1.47e3iT - 3.41e6T^{2} \) |
| 47 | \( 1 - 1.26e3T + 4.87e6T^{2} \) |
| 53 | \( 1 - 3.70e3iT - 7.89e6T^{2} \) |
| 59 | \( 1 + 454. iT - 1.21e7T^{2} \) |
| 61 | \( 1 + 6.03e3iT - 1.38e7T^{2} \) |
| 67 | \( 1 - 1.24e3T + 2.01e7T^{2} \) |
| 71 | \( 1 - 5.50e3iT - 2.54e7T^{2} \) |
| 73 | \( 1 - 8.87e3iT - 2.83e7T^{2} \) |
| 79 | \( 1 - 956. iT - 3.89e7T^{2} \) |
| 83 | \( 1 - 1.64e3iT - 4.74e7T^{2} \) |
| 89 | \( 1 - 417.T + 6.27e7T^{2} \) |
| 97 | \( 1 - 266. iT - 8.85e7T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.09243780387396712948341362847, −13.23807647869303385508146730956, −11.08310010881596999238592291881, −10.44650045184968345873200261397, −9.607730421326606663392036320536, −8.726362810913341618331622922559, −7.20853954720893649630174818790, −6.63272448132976042317360640704, −3.55559520447927831562079016183, −2.49831211832050767482362137660,
0.36729035971958122696852550442, 1.66929251359731825551531121019, 3.90658318814094185048284149050, 6.16849840829640255031869826418, 7.70622140558162102235643359872, 8.623990087012099854710948008224, 9.302244502594383330239169093417, 9.967633622709729890011188197677, 11.95177731142594304068248044639, 13.08189721229683915254667075530