L(s) = 1 | − 6.51·2-s + (−5.97 + 6.72i)3-s + 26.5·4-s + 31.1i·5-s + (38.9 − 43.8i)6-s + 44.9·7-s − 68.5·8-s + (−9.48 − 80.4i)9-s − 202. i·10-s + 146.·11-s + (−158. + 178. i)12-s + 138.·13-s − 292.·14-s + (−209. − 186. i)15-s + 22.5·16-s + 370.·17-s + ⋯ |
L(s) = 1 | − 1.62·2-s + (−0.664 + 0.747i)3-s + 1.65·4-s + 1.24i·5-s + (1.08 − 1.21i)6-s + 0.916·7-s − 1.07·8-s + (−0.117 − 0.993i)9-s − 2.02i·10-s + 1.20·11-s + (−1.10 + 1.23i)12-s + 0.817·13-s − 1.49·14-s + (−0.930 − 0.827i)15-s + 0.0881·16-s + 1.28·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 87 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.301 - 0.953i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 87 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (-0.301 - 0.953i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{5}{2})\) |
\(\approx\) |
\(0.431196 + 0.588816i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.431196 + 0.588816i\) |
\(L(3)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (5.97 - 6.72i)T \) |
| 29 | \( 1 + (430. - 722. i)T \) |
good | 2 | \( 1 + 6.51T + 16T^{2} \) |
| 5 | \( 1 - 31.1iT - 625T^{2} \) |
| 7 | \( 1 - 44.9T + 2.40e3T^{2} \) |
| 11 | \( 1 - 146.T + 1.46e4T^{2} \) |
| 13 | \( 1 - 138.T + 2.85e4T^{2} \) |
| 17 | \( 1 - 370.T + 8.35e4T^{2} \) |
| 19 | \( 1 - 506. iT - 1.30e5T^{2} \) |
| 23 | \( 1 - 46.4iT - 2.79e5T^{2} \) |
| 31 | \( 1 + 807. iT - 9.23e5T^{2} \) |
| 37 | \( 1 + 409. iT - 1.87e6T^{2} \) |
| 41 | \( 1 - 897.T + 2.82e6T^{2} \) |
| 43 | \( 1 + 1.57e3iT - 3.41e6T^{2} \) |
| 47 | \( 1 + 2.76e3T + 4.87e6T^{2} \) |
| 53 | \( 1 + 3.66e3iT - 7.89e6T^{2} \) |
| 59 | \( 1 - 5.90e3iT - 1.21e7T^{2} \) |
| 61 | \( 1 - 5.06e3iT - 1.38e7T^{2} \) |
| 67 | \( 1 - 5.36e3T + 2.01e7T^{2} \) |
| 71 | \( 1 + 4.09e3iT - 2.54e7T^{2} \) |
| 73 | \( 1 - 5.77e3iT - 2.83e7T^{2} \) |
| 79 | \( 1 + 6.09e3iT - 3.89e7T^{2} \) |
| 83 | \( 1 - 4.86e3iT - 4.74e7T^{2} \) |
| 89 | \( 1 + 2.04e3T + 6.27e7T^{2} \) |
| 97 | \( 1 - 6.05e3iT - 8.85e7T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.37957672564214233820796641241, −11.89263845455667941719037130808, −11.18477367977480006654329170725, −10.43076689618278095063082854402, −9.570149770931888599733080733535, −8.321575510911315751797290236652, −7.08163770202723669176622142711, −5.91046318385856876935029271839, −3.68982463905092867898251134297, −1.36260718949124874971876570444,
0.830391688344346766703534728397, 1.53922242898547828262612161273, 4.89213898772751697612057999763, 6.46035927748047027515365297732, 7.79574683100524770873871437598, 8.552428638181509762677235100245, 9.540167385471622774048051934553, 11.08555917758201685629501600192, 11.66112479889563294316469595149, 12.80361901309373493728259573816