L(s) = 1 | + 6.51·2-s + (5.97 − 6.72i)3-s + 26.5·4-s + 31.1i·5-s + (38.9 − 43.8i)6-s + 44.9·7-s + 68.5·8-s + (−9.48 − 80.4i)9-s + 202. i·10-s − 146.·11-s + (158. − 178. i)12-s + 138.·13-s + 292.·14-s + (209. + 186. i)15-s + 22.5·16-s − 370.·17-s + ⋯ |
L(s) = 1 | + 1.62·2-s + (0.664 − 0.747i)3-s + 1.65·4-s + 1.24i·5-s + (1.08 − 1.21i)6-s + 0.916·7-s + 1.07·8-s + (−0.117 − 0.993i)9-s + 2.02i·10-s − 1.20·11-s + (1.10 − 1.23i)12-s + 0.817·13-s + 1.49·14-s + (0.930 + 0.827i)15-s + 0.0881·16-s − 1.28·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 87 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.982 + 0.188i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 87 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (0.982 + 0.188i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{5}{2})\) |
\(\approx\) |
\(4.83999 - 0.459317i\) |
\(L(\frac12)\) |
\(\approx\) |
\(4.83999 - 0.459317i\) |
\(L(3)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-5.97 + 6.72i)T \) |
| 29 | \( 1 + (-430. - 722. i)T \) |
good | 2 | \( 1 - 6.51T + 16T^{2} \) |
| 5 | \( 1 - 31.1iT - 625T^{2} \) |
| 7 | \( 1 - 44.9T + 2.40e3T^{2} \) |
| 11 | \( 1 + 146.T + 1.46e4T^{2} \) |
| 13 | \( 1 - 138.T + 2.85e4T^{2} \) |
| 17 | \( 1 + 370.T + 8.35e4T^{2} \) |
| 19 | \( 1 + 506. iT - 1.30e5T^{2} \) |
| 23 | \( 1 - 46.4iT - 2.79e5T^{2} \) |
| 31 | \( 1 - 807. iT - 9.23e5T^{2} \) |
| 37 | \( 1 - 409. iT - 1.87e6T^{2} \) |
| 41 | \( 1 + 897.T + 2.82e6T^{2} \) |
| 43 | \( 1 - 1.57e3iT - 3.41e6T^{2} \) |
| 47 | \( 1 - 2.76e3T + 4.87e6T^{2} \) |
| 53 | \( 1 + 3.66e3iT - 7.89e6T^{2} \) |
| 59 | \( 1 - 5.90e3iT - 1.21e7T^{2} \) |
| 61 | \( 1 + 5.06e3iT - 1.38e7T^{2} \) |
| 67 | \( 1 - 5.36e3T + 2.01e7T^{2} \) |
| 71 | \( 1 + 4.09e3iT - 2.54e7T^{2} \) |
| 73 | \( 1 + 5.77e3iT - 2.83e7T^{2} \) |
| 79 | \( 1 - 6.09e3iT - 3.89e7T^{2} \) |
| 83 | \( 1 - 4.86e3iT - 4.74e7T^{2} \) |
| 89 | \( 1 - 2.04e3T + 6.27e7T^{2} \) |
| 97 | \( 1 + 6.05e3iT - 8.85e7T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.59068705493836390369259329547, −12.79588877839280030670115900589, −11.40922160367410428393578144428, −10.80796512250698610185872284734, −8.606772692944831864383666904320, −7.21553983771671751751301970974, −6.42875374565904602219644270277, −4.86810741516807410984405781083, −3.22734733111910007296611151491, −2.28127644204221460830365524703,
2.19664767738612109591243004818, 3.97996734476891377192402612483, 4.79346382920342195234684942168, 5.71743909540919152238922417885, 7.924904245966939029317543745653, 8.825013441786189126157082432461, 10.50838913064069600086733145275, 11.58794314933490047523094651608, 12.84354345443405780211975473013, 13.50582596196196198051312752996