L(s) = 1 | + 5.73·2-s + (−7.98 + 4.14i)3-s + 16.9·4-s − 47.2i·5-s + (−45.8 + 23.7i)6-s − 77.2·7-s + 5.28·8-s + (46.6 − 66.2i)9-s − 270. i·10-s − 9.19·11-s + (−135. + 70.1i)12-s + 132.·13-s − 443.·14-s + (195. + 377. i)15-s − 240.·16-s + 152.·17-s + ⋯ |
L(s) = 1 | + 1.43·2-s + (−0.887 + 0.460i)3-s + 1.05·4-s − 1.88i·5-s + (−1.27 + 0.660i)6-s − 1.57·7-s + 0.0825·8-s + (0.576 − 0.817i)9-s − 2.70i·10-s − 0.0760·11-s + (−0.938 + 0.486i)12-s + 0.785·13-s − 2.26·14-s + (0.869 + 1.67i)15-s − 0.939·16-s + 0.526·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 87 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.466 + 0.884i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 87 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (-0.466 + 0.884i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{5}{2})\) |
\(\approx\) |
\(0.825596 - 1.36840i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.825596 - 1.36840i\) |
\(L(3)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (7.98 - 4.14i)T \) |
| 29 | \( 1 + (-690. + 479. i)T \) |
good | 2 | \( 1 - 5.73T + 16T^{2} \) |
| 5 | \( 1 + 47.2iT - 625T^{2} \) |
| 7 | \( 1 + 77.2T + 2.40e3T^{2} \) |
| 11 | \( 1 + 9.19T + 1.46e4T^{2} \) |
| 13 | \( 1 - 132.T + 2.85e4T^{2} \) |
| 17 | \( 1 - 152.T + 8.35e4T^{2} \) |
| 19 | \( 1 + 482. iT - 1.30e5T^{2} \) |
| 23 | \( 1 - 175. iT - 2.79e5T^{2} \) |
| 31 | \( 1 - 848. iT - 9.23e5T^{2} \) |
| 37 | \( 1 - 177. iT - 1.87e6T^{2} \) |
| 41 | \( 1 - 1.78e3T + 2.82e6T^{2} \) |
| 43 | \( 1 + 1.47e3iT - 3.41e6T^{2} \) |
| 47 | \( 1 + 1.26e3T + 4.87e6T^{2} \) |
| 53 | \( 1 + 3.70e3iT - 7.89e6T^{2} \) |
| 59 | \( 1 - 454. iT - 1.21e7T^{2} \) |
| 61 | \( 1 + 6.03e3iT - 1.38e7T^{2} \) |
| 67 | \( 1 - 1.24e3T + 2.01e7T^{2} \) |
| 71 | \( 1 + 5.50e3iT - 2.54e7T^{2} \) |
| 73 | \( 1 - 8.87e3iT - 2.83e7T^{2} \) |
| 79 | \( 1 - 956. iT - 3.89e7T^{2} \) |
| 83 | \( 1 + 1.64e3iT - 4.74e7T^{2} \) |
| 89 | \( 1 + 417.T + 6.27e7T^{2} \) |
| 97 | \( 1 - 266. iT - 8.85e7T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.88286258257224652354190914185, −12.48059890114200284422211220781, −11.46719061320156079287166421969, −9.779881011028401348400524316144, −8.889929615442820061684568173791, −6.56288454706658617998548423498, −5.59324381338719846812634283535, −4.68660048572383660524371680834, −3.55801766558813590789771404329, −0.53175000179485358882912721232,
2.78507152391991726456598132612, 3.82173836271579618032086845603, 6.04664616398073069233492697282, 6.22116261869333607695320452037, 7.35730359172782600613473210543, 9.974920787326998450754453954140, 10.84682247115531692014988809756, 11.91973929650908197092141688419, 12.82229419783027048020434166582, 13.71786268484684475536987027809