L(s) = 1 | + 1.36·2-s + (−1.79 − 8.81i)3-s − 14.1·4-s + 35.6i·5-s + (−2.44 − 12.0i)6-s + 75.8·7-s − 41.0·8-s + (−74.5 + 31.6i)9-s + 48.5i·10-s + 182.·11-s + (25.3 + 124. i)12-s − 13.7·13-s + 103.·14-s + (314. − 63.9i)15-s + 170.·16-s + 243.·17-s + ⋯ |
L(s) = 1 | + 0.340·2-s + (−0.199 − 0.979i)3-s − 0.884·4-s + 1.42i·5-s + (−0.0677 − 0.333i)6-s + 1.54·7-s − 0.641·8-s + (−0.920 + 0.390i)9-s + 0.485i·10-s + 1.51·11-s + (0.175 + 0.866i)12-s − 0.0814·13-s + 0.527·14-s + (1.39 − 0.284i)15-s + 0.665·16-s + 0.842·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 87 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.938 - 0.345i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 87 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (0.938 - 0.345i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{5}{2})\) |
\(\approx\) |
\(1.72101 + 0.306727i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.72101 + 0.306727i\) |
\(L(3)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (1.79 + 8.81i)T \) |
| 29 | \( 1 + (-127. - 831. i)T \) |
good | 2 | \( 1 - 1.36T + 16T^{2} \) |
| 5 | \( 1 - 35.6iT - 625T^{2} \) |
| 7 | \( 1 - 75.8T + 2.40e3T^{2} \) |
| 11 | \( 1 - 182.T + 1.46e4T^{2} \) |
| 13 | \( 1 + 13.7T + 2.85e4T^{2} \) |
| 17 | \( 1 - 243.T + 8.35e4T^{2} \) |
| 19 | \( 1 - 193. iT - 1.30e5T^{2} \) |
| 23 | \( 1 - 143. iT - 2.79e5T^{2} \) |
| 31 | \( 1 - 1.00e3iT - 9.23e5T^{2} \) |
| 37 | \( 1 + 314. iT - 1.87e6T^{2} \) |
| 41 | \( 1 + 2.74e3T + 2.82e6T^{2} \) |
| 43 | \( 1 + 1.42e3iT - 3.41e6T^{2} \) |
| 47 | \( 1 - 1.96e3T + 4.87e6T^{2} \) |
| 53 | \( 1 - 2.90e3iT - 7.89e6T^{2} \) |
| 59 | \( 1 + 4.80e3iT - 1.21e7T^{2} \) |
| 61 | \( 1 + 5.90e3iT - 1.38e7T^{2} \) |
| 67 | \( 1 - 134.T + 2.01e7T^{2} \) |
| 71 | \( 1 - 6.13e3iT - 2.54e7T^{2} \) |
| 73 | \( 1 + 3.85e3iT - 2.83e7T^{2} \) |
| 79 | \( 1 + 1.12e4iT - 3.89e7T^{2} \) |
| 83 | \( 1 - 265. iT - 4.74e7T^{2} \) |
| 89 | \( 1 + 1.09e3T + 6.27e7T^{2} \) |
| 97 | \( 1 - 1.12e4iT - 8.85e7T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.03203765407061137212744198933, −12.30752773561721496401538376076, −11.60716644842565876724946773431, −10.50199923116661428818492652411, −8.821540051274247898009769239297, −7.69375387399327663370680039505, −6.55559128774223917659023228089, −5.22172436745015585885498725399, −3.48420740555332770978454407161, −1.49525197269022294579243395823,
0.979038120421890247997467920502, 4.08360107187990780589573377510, 4.71903634276541686565956015679, 5.66574631962123300663206833456, 8.253807994677084073092431188921, 8.916680617501240774691651099983, 9.843878318503980040841263940656, 11.54922212606175730303961517434, 12.11924056823961793993435426459, 13.57899148418531303893383836359