L(s) = 1 | + 0.630·2-s + (7.48 − 5.00i)3-s − 15.6·4-s + 33.7i·5-s + (4.71 − 3.15i)6-s − 48.1·7-s − 19.9·8-s + (30.9 − 74.8i)9-s + 21.2i·10-s − 157.·11-s + (−116. + 78.0i)12-s − 194.·13-s − 30.3·14-s + (168. + 252. i)15-s + 237.·16-s + 111.·17-s + ⋯ |
L(s) = 1 | + 0.157·2-s + (0.831 − 0.555i)3-s − 0.975·4-s + 1.35i·5-s + (0.130 − 0.0875i)6-s − 0.982·7-s − 0.311·8-s + (0.382 − 0.923i)9-s + 0.212i·10-s − 1.30·11-s + (−0.810 + 0.541i)12-s − 1.15·13-s − 0.154·14-s + (0.750 + 1.12i)15-s + 0.926·16-s + 0.385·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 87 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.856 - 0.516i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 87 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (-0.856 - 0.516i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{5}{2})\) |
\(\approx\) |
\(0.130693 + 0.469490i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.130693 + 0.469490i\) |
\(L(3)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-7.48 + 5.00i)T \) |
| 29 | \( 1 + (357. + 761. i)T \) |
good | 2 | \( 1 - 0.630T + 16T^{2} \) |
| 5 | \( 1 - 33.7iT - 625T^{2} \) |
| 7 | \( 1 + 48.1T + 2.40e3T^{2} \) |
| 11 | \( 1 + 157.T + 1.46e4T^{2} \) |
| 13 | \( 1 + 194.T + 2.85e4T^{2} \) |
| 17 | \( 1 - 111.T + 8.35e4T^{2} \) |
| 19 | \( 1 - 542. iT - 1.30e5T^{2} \) |
| 23 | \( 1 - 419. iT - 2.79e5T^{2} \) |
| 31 | \( 1 + 340. iT - 9.23e5T^{2} \) |
| 37 | \( 1 - 1.47e3iT - 1.87e6T^{2} \) |
| 41 | \( 1 + 205.T + 2.82e6T^{2} \) |
| 43 | \( 1 + 2.13e3iT - 3.41e6T^{2} \) |
| 47 | \( 1 - 2.20e3T + 4.87e6T^{2} \) |
| 53 | \( 1 + 1.41e3iT - 7.89e6T^{2} \) |
| 59 | \( 1 - 44.2iT - 1.21e7T^{2} \) |
| 61 | \( 1 - 1.30e3iT - 1.38e7T^{2} \) |
| 67 | \( 1 + 3.05e3T + 2.01e7T^{2} \) |
| 71 | \( 1 - 350. iT - 2.54e7T^{2} \) |
| 73 | \( 1 - 1.02e4iT - 2.83e7T^{2} \) |
| 79 | \( 1 - 4.69e3iT - 3.89e7T^{2} \) |
| 83 | \( 1 + 3.22e3iT - 4.74e7T^{2} \) |
| 89 | \( 1 + 1.27e4T + 6.27e7T^{2} \) |
| 97 | \( 1 - 1.40e4iT - 8.85e7T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.87417582029706586119179837807, −13.06594985822278322932352222107, −12.13130835946120674050276692591, −10.15277051887830094034451547190, −9.733406783806592262735966104484, −8.088983919620954062428541323965, −7.20520310962558023364069984679, −5.76809357681251705146727469410, −3.66410181684537829481014770412, −2.65323429661869584328951826225,
0.19702113337671870745287815673, 2.90890250406956142528236913434, 4.55045047656397811035514467725, 5.24295323632719875921713165393, 7.62464465515526434267242932334, 8.834202462877346406118125656656, 9.398079086071637546493500364797, 10.39913684666297446942191356478, 12.67379129372916916849598274560, 12.88033311454821478588737930923