L(s) = 1 | − 3.29·2-s + (−1.45 − 8.88i)3-s − 5.16·4-s + 6.84i·5-s + (4.77 + 29.2i)6-s − 58.5·7-s + 69.6·8-s + (−76.7 + 25.7i)9-s − 22.5i·10-s − 62.4·11-s + (7.49 + 45.8i)12-s + 135.·13-s + 192.·14-s + (60.7 − 9.93i)15-s − 146.·16-s + 362.·17-s + ⋯ |
L(s) = 1 | − 0.822·2-s + (−0.161 − 0.986i)3-s − 0.322·4-s + 0.273i·5-s + (0.132 + 0.812i)6-s − 1.19·7-s + 1.08·8-s + (−0.947 + 0.318i)9-s − 0.225i·10-s − 0.516·11-s + (0.0520 + 0.318i)12-s + 0.801·13-s + 0.982·14-s + (0.270 − 0.0441i)15-s − 0.572·16-s + 1.25·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 87 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.811 - 0.584i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 87 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (0.811 - 0.584i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{5}{2})\) |
\(\approx\) |
\(0.523159 + 0.168792i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.523159 + 0.168792i\) |
\(L(3)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (1.45 + 8.88i)T \) |
| 29 | \( 1 + (-375. - 752. i)T \) |
good | 2 | \( 1 + 3.29T + 16T^{2} \) |
| 5 | \( 1 - 6.84iT - 625T^{2} \) |
| 7 | \( 1 + 58.5T + 2.40e3T^{2} \) |
| 11 | \( 1 + 62.4T + 1.46e4T^{2} \) |
| 13 | \( 1 - 135.T + 2.85e4T^{2} \) |
| 17 | \( 1 - 362.T + 8.35e4T^{2} \) |
| 19 | \( 1 + 168. iT - 1.30e5T^{2} \) |
| 23 | \( 1 - 889. iT - 2.79e5T^{2} \) |
| 31 | \( 1 + 156. iT - 9.23e5T^{2} \) |
| 37 | \( 1 + 1.49e3iT - 1.87e6T^{2} \) |
| 41 | \( 1 + 90.8T + 2.82e6T^{2} \) |
| 43 | \( 1 - 2.74e3iT - 3.41e6T^{2} \) |
| 47 | \( 1 + 2.05e3T + 4.87e6T^{2} \) |
| 53 | \( 1 + 2.79e3iT - 7.89e6T^{2} \) |
| 59 | \( 1 - 5.40e3iT - 1.21e7T^{2} \) |
| 61 | \( 1 - 1.21e3iT - 1.38e7T^{2} \) |
| 67 | \( 1 + 2.42e3T + 2.01e7T^{2} \) |
| 71 | \( 1 - 1.59e3iT - 2.54e7T^{2} \) |
| 73 | \( 1 - 7.00e3iT - 2.83e7T^{2} \) |
| 79 | \( 1 - 4.22e3iT - 3.89e7T^{2} \) |
| 83 | \( 1 - 1.06e4iT - 4.74e7T^{2} \) |
| 89 | \( 1 - 5.03e3T + 6.27e7T^{2} \) |
| 97 | \( 1 + 1.32e4iT - 8.85e7T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.31419606539163895476487850651, −12.74921520594209395886504823748, −11.27359360966227246939860461132, −10.13413315117276013909894786551, −9.059583972071300325946190910208, −7.889113876665576454651824109586, −6.89513566938234314217038398783, −5.53286303032459738751364515602, −3.21077908112246488198380872404, −1.09198999562597453001726803870,
0.45808557825477366411876385188, 3.35519907569250411305164865587, 4.79882390539986701423535047128, 6.25639720242140882865249073310, 8.134957391173179345721249940555, 9.033022431415146397930132216361, 10.06837915528370292278365381698, 10.55577125691262265561436789639, 12.22765909953636960855991303193, 13.34866471527712978881628733151