Properties

Label 2-867-1.1-c5-0-223
Degree $2$
Conductor $867$
Sign $-1$
Analytic cond. $139.052$
Root an. cond. $11.7920$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8.03·2-s + 9·3-s + 32.5·4-s − 14.1·5-s + 72.3·6-s + 244.·7-s + 4.38·8-s + 81·9-s − 113.·10-s − 627.·11-s + 292.·12-s − 93.1·13-s + 1.96e3·14-s − 127.·15-s − 1.00e3·16-s + 650.·18-s − 2.60e3·19-s − 459.·20-s + 2.20e3·21-s − 5.03e3·22-s − 4.54e3·23-s + 39.4·24-s − 2.92e3·25-s − 748.·26-s + 729·27-s + 7.95e3·28-s + 2.16e3·29-s + ⋯
L(s)  = 1  + 1.42·2-s + 0.577·3-s + 1.01·4-s − 0.252·5-s + 0.819·6-s + 1.88·7-s + 0.0242·8-s + 0.333·9-s − 0.358·10-s − 1.56·11-s + 0.587·12-s − 0.152·13-s + 2.67·14-s − 0.145·15-s − 0.982·16-s + 0.473·18-s − 1.65·19-s − 0.256·20-s + 1.08·21-s − 2.21·22-s − 1.79·23-s + 0.0139·24-s − 0.936·25-s − 0.217·26-s + 0.192·27-s + 1.91·28-s + 0.477·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 867 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 867 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(867\)    =    \(3 \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(139.052\)
Root analytic conductor: \(11.7920\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 867,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - 9T \)
17 \( 1 \)
good2 \( 1 - 8.03T + 32T^{2} \)
5 \( 1 + 14.1T + 3.12e3T^{2} \)
7 \( 1 - 244.T + 1.68e4T^{2} \)
11 \( 1 + 627.T + 1.61e5T^{2} \)
13 \( 1 + 93.1T + 3.71e5T^{2} \)
19 \( 1 + 2.60e3T + 2.47e6T^{2} \)
23 \( 1 + 4.54e3T + 6.43e6T^{2} \)
29 \( 1 - 2.16e3T + 2.05e7T^{2} \)
31 \( 1 + 4.82e3T + 2.86e7T^{2} \)
37 \( 1 - 5.36e3T + 6.93e7T^{2} \)
41 \( 1 + 2.10e3T + 1.15e8T^{2} \)
43 \( 1 + 5.36e3T + 1.47e8T^{2} \)
47 \( 1 + 7.11e3T + 2.29e8T^{2} \)
53 \( 1 - 2.08e4T + 4.18e8T^{2} \)
59 \( 1 - 1.13e4T + 7.14e8T^{2} \)
61 \( 1 - 1.02e4T + 8.44e8T^{2} \)
67 \( 1 - 2.49e4T + 1.35e9T^{2} \)
71 \( 1 + 2.07e3T + 1.80e9T^{2} \)
73 \( 1 + 5.81e4T + 2.07e9T^{2} \)
79 \( 1 + 4.98e4T + 3.07e9T^{2} \)
83 \( 1 - 9.65e4T + 3.93e9T^{2} \)
89 \( 1 - 2.95e4T + 5.58e9T^{2} \)
97 \( 1 + 1.09e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.586106214055919779983429264012, −8.109752518820186968593167871612, −7.38002504986725268035579029624, −6.03011599087361143309590964682, −5.20870820616165826999566680468, −4.47386693113149630768677215668, −3.84256828437806130849437674191, −2.41470194217837358146543743228, −1.96572142771402167326517059653, 0, 1.96572142771402167326517059653, 2.41470194217837358146543743228, 3.84256828437806130849437674191, 4.47386693113149630768677215668, 5.20870820616165826999566680468, 6.03011599087361143309590964682, 7.38002504986725268035579029624, 8.109752518820186968593167871612, 8.586106214055919779983429264012

Graph of the $Z$-function along the critical line