Properties

Label 2-867-1.1-c5-0-168
Degree $2$
Conductor $867$
Sign $-1$
Analytic cond. $139.052$
Root an. cond. $11.7920$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.803·2-s + 9·3-s − 31.3·4-s + 37.1·5-s + 7.23·6-s − 118.·7-s − 50.9·8-s + 81·9-s + 29.8·10-s + 452.·11-s − 282.·12-s − 1.07e3·13-s − 95.2·14-s + 334.·15-s + 962.·16-s + 65.1·18-s + 1.54e3·19-s − 1.16e3·20-s − 1.06e3·21-s + 364.·22-s + 1.28e3·23-s − 458.·24-s − 1.74e3·25-s − 864.·26-s + 729·27-s + 3.71e3·28-s + 1.52e3·29-s + ⋯
L(s)  = 1  + 0.142·2-s + 0.577·3-s − 0.979·4-s + 0.665·5-s + 0.0820·6-s − 0.914·7-s − 0.281·8-s + 0.333·9-s + 0.0945·10-s + 1.12·11-s − 0.565·12-s − 1.76·13-s − 0.129·14-s + 0.384·15-s + 0.939·16-s + 0.0473·18-s + 0.982·19-s − 0.651·20-s − 0.527·21-s + 0.160·22-s + 0.506·23-s − 0.162·24-s − 0.557·25-s − 0.250·26-s + 0.192·27-s + 0.895·28-s + 0.337·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 867 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 867 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(867\)    =    \(3 \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(139.052\)
Root analytic conductor: \(11.7920\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 867,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - 9T \)
17 \( 1 \)
good2 \( 1 - 0.803T + 32T^{2} \)
5 \( 1 - 37.1T + 3.12e3T^{2} \)
7 \( 1 + 118.T + 1.68e4T^{2} \)
11 \( 1 - 452.T + 1.61e5T^{2} \)
13 \( 1 + 1.07e3T + 3.71e5T^{2} \)
19 \( 1 - 1.54e3T + 2.47e6T^{2} \)
23 \( 1 - 1.28e3T + 6.43e6T^{2} \)
29 \( 1 - 1.52e3T + 2.05e7T^{2} \)
31 \( 1 - 3.59e3T + 2.86e7T^{2} \)
37 \( 1 + 1.07e3T + 6.93e7T^{2} \)
41 \( 1 - 1.82e4T + 1.15e8T^{2} \)
43 \( 1 + 2.21e4T + 1.47e8T^{2} \)
47 \( 1 + 5.84e3T + 2.29e8T^{2} \)
53 \( 1 + 2.47e4T + 4.18e8T^{2} \)
59 \( 1 - 3.94e4T + 7.14e8T^{2} \)
61 \( 1 - 2.05e4T + 8.44e8T^{2} \)
67 \( 1 + 8.23e3T + 1.35e9T^{2} \)
71 \( 1 + 6.80e4T + 1.80e9T^{2} \)
73 \( 1 - 2.67e4T + 2.07e9T^{2} \)
79 \( 1 - 3.09e4T + 3.07e9T^{2} \)
83 \( 1 + 3.50e4T + 3.93e9T^{2} \)
89 \( 1 + 1.26e5T + 5.58e9T^{2} \)
97 \( 1 - 1.31e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.335801768465084722825521149181, −8.298241067428596778703046086292, −7.26490206110617352863327903251, −6.41013699655380244189042498076, −5.35828462878161646886772229201, −4.49393422885210918376018828545, −3.47270644522953153809271858623, −2.61374520456940982515683962935, −1.24651114034337198562428089069, 0, 1.24651114034337198562428089069, 2.61374520456940982515683962935, 3.47270644522953153809271858623, 4.49393422885210918376018828545, 5.35828462878161646886772229201, 6.41013699655380244189042498076, 7.26490206110617352863327903251, 8.298241067428596778703046086292, 9.335801768465084722825521149181

Graph of the $Z$-function along the critical line