L(s) = 1 | + (1.88 + 0.779i)2-s + (−1.33 + 1.10i)3-s + (1.51 + 1.51i)4-s + (0.405 + 2.03i)5-s + (−3.37 + 1.03i)6-s + (−1.95 − 0.388i)7-s + (0.112 + 0.272i)8-s + (0.565 − 2.94i)9-s + (−0.825 + 4.14i)10-s + (−1.95 + 1.30i)11-s + (−3.69 − 0.351i)12-s + (−4.24 + 4.24i)13-s + (−3.37 − 2.25i)14-s + (−2.78 − 2.27i)15-s − 3.68i·16-s + ⋯ |
L(s) = 1 | + (1.33 + 0.550i)2-s + (−0.770 + 0.636i)3-s + (0.758 + 0.758i)4-s + (0.181 + 0.911i)5-s + (−1.37 + 0.422i)6-s + (−0.738 − 0.146i)7-s + (0.0399 + 0.0964i)8-s + (0.188 − 0.982i)9-s + (−0.260 + 1.31i)10-s + (−0.590 + 0.394i)11-s + (−1.06 − 0.101i)12-s + (−1.17 + 1.17i)13-s + (−0.901 − 0.602i)14-s + (−0.720 − 0.586i)15-s − 0.922i·16-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 867 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.972 + 0.231i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 867 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.972 + 0.231i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.156248 - 1.32895i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.156248 - 1.32895i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (1.33 - 1.10i)T \) |
| 17 | \( 1 \) |
good | 2 | \( 1 + (-1.88 - 0.779i)T + (1.41 + 1.41i)T^{2} \) |
| 5 | \( 1 + (-0.405 - 2.03i)T + (-4.61 + 1.91i)T^{2} \) |
| 7 | \( 1 + (1.95 + 0.388i)T + (6.46 + 2.67i)T^{2} \) |
| 11 | \( 1 + (1.95 - 1.30i)T + (4.20 - 10.1i)T^{2} \) |
| 13 | \( 1 + (4.24 - 4.24i)T - 13iT^{2} \) |
| 19 | \( 1 + (1.93 - 4.67i)T + (-13.4 - 13.4i)T^{2} \) |
| 23 | \( 1 + (0.491 + 0.734i)T + (-8.80 + 21.2i)T^{2} \) |
| 29 | \( 1 + (-0.0587 + 0.0116i)T + (26.7 - 11.0i)T^{2} \) |
| 31 | \( 1 + (1.63 - 2.44i)T + (-11.8 - 28.6i)T^{2} \) |
| 37 | \( 1 + (2.28 + 1.52i)T + (14.1 + 34.1i)T^{2} \) |
| 41 | \( 1 + (-0.647 + 3.25i)T + (-37.8 - 15.6i)T^{2} \) |
| 43 | \( 1 + (-2.53 - 6.12i)T + (-30.4 + 30.4i)T^{2} \) |
| 47 | \( 1 + (-5.76 - 5.76i)T + 47iT^{2} \) |
| 53 | \( 1 + (1.75 + 0.725i)T + (37.4 + 37.4i)T^{2} \) |
| 59 | \( 1 + (-3.54 - 8.56i)T + (-41.7 + 41.7i)T^{2} \) |
| 61 | \( 1 + (-1.05 + 5.30i)T + (-56.3 - 23.3i)T^{2} \) |
| 67 | \( 1 - 7.09iT - 67T^{2} \) |
| 71 | \( 1 + (-0.496 + 0.742i)T + (-27.1 - 65.5i)T^{2} \) |
| 73 | \( 1 + (-2.77 + 0.551i)T + (67.4 - 27.9i)T^{2} \) |
| 79 | \( 1 + (-2.20 - 3.30i)T + (-30.2 + 72.9i)T^{2} \) |
| 83 | \( 1 + (1.44 - 3.49i)T + (-58.6 - 58.6i)T^{2} \) |
| 89 | \( 1 + (-2.00 + 2.00i)T - 89iT^{2} \) |
| 97 | \( 1 + (-3.67 - 18.4i)T + (-89.6 + 37.1i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.55465960177271458287233893416, −9.982532628187276860943182735295, −9.239685065492919999128147789227, −7.48415899304046521110120855604, −6.76085441344148853619756030792, −6.24952486530907067995964812519, −5.31934572047860014343323734164, −4.45998854395654506275755333639, −3.66982440048577505320397609038, −2.56843193062669678838428885185,
0.42509877905795382459291173832, 2.19598906019714179822763272422, 3.11281166951507708886721322048, 4.57713763012448561844590997957, 5.25300653970834619539879508427, 5.76255367504793947271175739152, 6.81106670500152490441136649906, 7.87211782284969661676524867234, 8.865066588577798393728906823851, 10.05283434512224052973371424514