L(s) = 1 | + (1.34 − 0.556i)2-s + (0.336 + 1.69i)3-s + (0.0830 − 0.0830i)4-s + (2.99 + 0.595i)5-s + (1.39 + 2.09i)6-s + (−0.420 − 2.11i)7-s + (−1.04 + 2.53i)8-s + (−2.77 + 1.14i)9-s + (4.35 − 0.866i)10-s + (−0.915 + 1.37i)11-s + (0.168 + 0.113i)12-s + (3.12 + 3.12i)13-s + (−1.74 − 2.60i)14-s + (−0.00349 + 5.28i)15-s + 4.22i·16-s + ⋯ |
L(s) = 1 | + (0.950 − 0.393i)2-s + (0.194 + 0.980i)3-s + (0.0415 − 0.0415i)4-s + (1.33 + 0.266i)5-s + (0.571 + 0.855i)6-s + (−0.159 − 0.799i)7-s + (−0.370 + 0.894i)8-s + (−0.924 + 0.381i)9-s + (1.37 − 0.273i)10-s + (−0.276 + 0.413i)11-s + (0.0487 + 0.0326i)12-s + (0.866 + 0.866i)13-s + (−0.465 − 0.697i)14-s + (−0.000903 + 1.36i)15-s + 1.05i·16-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 867 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.443 - 0.896i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 867 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.443 - 0.896i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.50355 + 1.55497i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.50355 + 1.55497i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.336 - 1.69i)T \) |
| 17 | \( 1 \) |
good | 2 | \( 1 + (-1.34 + 0.556i)T + (1.41 - 1.41i)T^{2} \) |
| 5 | \( 1 + (-2.99 - 0.595i)T + (4.61 + 1.91i)T^{2} \) |
| 7 | \( 1 + (0.420 + 2.11i)T + (-6.46 + 2.67i)T^{2} \) |
| 11 | \( 1 + (0.915 - 1.37i)T + (-4.20 - 10.1i)T^{2} \) |
| 13 | \( 1 + (-3.12 - 3.12i)T + 13iT^{2} \) |
| 19 | \( 1 + (-0.330 - 0.797i)T + (-13.4 + 13.4i)T^{2} \) |
| 23 | \( 1 + (0.637 + 0.425i)T + (8.80 + 21.2i)T^{2} \) |
| 29 | \( 1 + (-1.55 + 7.83i)T + (-26.7 - 11.0i)T^{2} \) |
| 31 | \( 1 + (-2.40 + 1.60i)T + (11.8 - 28.6i)T^{2} \) |
| 37 | \( 1 + (-1.32 - 1.98i)T + (-14.1 + 34.1i)T^{2} \) |
| 41 | \( 1 + (-3.02 + 0.600i)T + (37.8 - 15.6i)T^{2} \) |
| 43 | \( 1 + (4.38 - 10.5i)T + (-30.4 - 30.4i)T^{2} \) |
| 47 | \( 1 + (-2.21 + 2.21i)T - 47iT^{2} \) |
| 53 | \( 1 + (5.88 - 2.43i)T + (37.4 - 37.4i)T^{2} \) |
| 59 | \( 1 + (-2.33 + 5.62i)T + (-41.7 - 41.7i)T^{2} \) |
| 61 | \( 1 + (-5.73 + 1.14i)T + (56.3 - 23.3i)T^{2} \) |
| 67 | \( 1 - 7.19iT - 67T^{2} \) |
| 71 | \( 1 + (1.80 - 1.20i)T + (27.1 - 65.5i)T^{2} \) |
| 73 | \( 1 + (-2.45 + 12.3i)T + (-67.4 - 27.9i)T^{2} \) |
| 79 | \( 1 + (4.95 + 3.31i)T + (30.2 + 72.9i)T^{2} \) |
| 83 | \( 1 + (4.96 + 11.9i)T + (-58.6 + 58.6i)T^{2} \) |
| 89 | \( 1 + (3.42 + 3.42i)T + 89iT^{2} \) |
| 97 | \( 1 + (-3.47 - 0.692i)T + (89.6 + 37.1i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.22179837614281392262574537286, −9.740191763806832623574136459538, −8.865209046369155570200496209155, −7.895779117633110389679820952214, −6.39724159862003106554612889419, −5.79602510600683810671197640514, −4.68555872552062875550872073366, −4.09086455425154617313098338216, −3.04179434589093342398657181379, −2.03414136797447177213099689626,
1.11514335319191800547362864467, 2.49604306832822513373489170852, 3.45781031706202169118976693275, 5.18156778330156490233683849147, 5.68597001575030010194645889756, 6.21410129480672955617074690177, 7.09652726348147102313785496110, 8.446723313537709353389487963285, 8.975487024798659752578536657046, 9.896526506471305487436192746112