L(s) = 1 | + (−1.16 − 1.16i)2-s + (−0.923 + 0.382i)3-s + 0.729i·4-s + (1.55 + 3.75i)5-s + (1.52 + 0.632i)6-s + (−0.352 + 0.852i)7-s + (−1.48 + 1.48i)8-s + (0.707 − 0.707i)9-s + (2.57 − 6.20i)10-s + (2.09 + 0.868i)11-s + (−0.279 − 0.674i)12-s − 3.57i·13-s + (1.40 − 0.583i)14-s + (−2.87 − 2.87i)15-s + 4.92·16-s + ⋯ |
L(s) = 1 | + (−0.826 − 0.826i)2-s + (−0.533 + 0.220i)3-s + 0.364i·4-s + (0.695 + 1.68i)5-s + (0.623 + 0.258i)6-s + (−0.133 + 0.322i)7-s + (−0.524 + 0.524i)8-s + (0.235 − 0.235i)9-s + (0.813 − 1.96i)10-s + (0.632 + 0.261i)11-s + (−0.0806 − 0.194i)12-s − 0.991i·13-s + (0.376 − 0.155i)14-s + (−0.742 − 0.742i)15-s + 1.23·16-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 867 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.299 - 0.954i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 867 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.299 - 0.954i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.601739 + 0.441763i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.601739 + 0.441763i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.923 - 0.382i)T \) |
| 17 | \( 1 \) |
good | 2 | \( 1 + (1.16 + 1.16i)T + 2iT^{2} \) |
| 5 | \( 1 + (-1.55 - 3.75i)T + (-3.53 + 3.53i)T^{2} \) |
| 7 | \( 1 + (0.352 - 0.852i)T + (-4.94 - 4.94i)T^{2} \) |
| 11 | \( 1 + (-2.09 - 0.868i)T + (7.77 + 7.77i)T^{2} \) |
| 13 | \( 1 + 3.57iT - 13T^{2} \) |
| 19 | \( 1 + (-1.22 - 1.22i)T + 19iT^{2} \) |
| 23 | \( 1 + (-4.71 - 1.95i)T + (16.2 + 16.2i)T^{2} \) |
| 29 | \( 1 + (0.843 + 2.03i)T + (-20.5 + 20.5i)T^{2} \) |
| 31 | \( 1 + (3.81 - 1.58i)T + (21.9 - 21.9i)T^{2} \) |
| 37 | \( 1 + (5.50 - 2.27i)T + (26.1 - 26.1i)T^{2} \) |
| 41 | \( 1 + (1.93 - 4.66i)T + (-28.9 - 28.9i)T^{2} \) |
| 43 | \( 1 + (3.69 - 3.69i)T - 43iT^{2} \) |
| 47 | \( 1 - 6.96iT - 47T^{2} \) |
| 53 | \( 1 + (1.90 + 1.90i)T + 53iT^{2} \) |
| 59 | \( 1 + (-5.23 + 5.23i)T - 59iT^{2} \) |
| 61 | \( 1 + (1.48 - 3.59i)T + (-43.1 - 43.1i)T^{2} \) |
| 67 | \( 1 + 12.0T + 67T^{2} \) |
| 71 | \( 1 + (1.40 - 0.583i)T + (50.2 - 50.2i)T^{2} \) |
| 73 | \( 1 + (0.445 + 1.07i)T + (-51.6 + 51.6i)T^{2} \) |
| 79 | \( 1 + (-10.9 - 4.54i)T + (55.8 + 55.8i)T^{2} \) |
| 83 | \( 1 + (-4.51 - 4.51i)T + 83iT^{2} \) |
| 89 | \( 1 - 10.3iT - 89T^{2} \) |
| 97 | \( 1 + (5.53 + 13.3i)T + (-68.5 + 68.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.37579897002668911700965087357, −9.732255274723915370468922693296, −9.138715809703418846647094590646, −7.83892803085689122976985346895, −6.82281279054069686988028505035, −6.04560067269845510088759275685, −5.27723213449767135703947602623, −3.44021566712961940956403634411, −2.73285111721481243458816744151, −1.49439654099981412693485065727,
0.53985718189026232921934315207, 1.68240653170168597063349318833, 3.82968286410505481905203171257, 4.95373916807711372859183809709, 5.75650075311048715870005834281, 6.69401028625216730861595230347, 7.33651296024477493006822336100, 8.611530537368589525517967716374, 8.934646794570823070519311353296, 9.579050093478354427498750884773