L(s) = 1 | − 0.765i·2-s + (0.707 + 0.707i)3-s + 1.41·4-s + (−0.0582 − 0.0582i)5-s + (0.541 − 0.541i)6-s + (1.95 − 1.95i)7-s − 2.61i·8-s + 1.00i·9-s + (−0.0445 + 0.0445i)10-s + (−0.472 + 0.472i)11-s + (1 + i)12-s + 3.28·13-s + (−1.49 − 1.49i)14-s − 0.0823i·15-s + 0.828·16-s + ⋯ |
L(s) = 1 | − 0.541i·2-s + (0.408 + 0.408i)3-s + 0.707·4-s + (−0.0260 − 0.0260i)5-s + (0.220 − 0.220i)6-s + (0.739 − 0.739i)7-s − 0.923i·8-s + 0.333i·9-s + (−0.0141 + 0.0141i)10-s + (−0.142 + 0.142i)11-s + (0.288 + 0.288i)12-s + 0.910·13-s + (−0.399 − 0.399i)14-s − 0.0212i·15-s + 0.207·16-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 867 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.698 + 0.715i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 867 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.698 + 0.715i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.19099 - 0.923620i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.19099 - 0.923620i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.707 - 0.707i)T \) |
| 17 | \( 1 \) |
good | 2 | \( 1 + 0.765iT - 2T^{2} \) |
| 5 | \( 1 + (0.0582 + 0.0582i)T + 5iT^{2} \) |
| 7 | \( 1 + (-1.95 + 1.95i)T - 7iT^{2} \) |
| 11 | \( 1 + (0.472 - 0.472i)T - 11iT^{2} \) |
| 13 | \( 1 - 3.28T + 13T^{2} \) |
| 19 | \( 1 + 3.64iT - 19T^{2} \) |
| 23 | \( 1 + (6.58 - 6.58i)T - 23iT^{2} \) |
| 29 | \( 1 + (-4.41 - 4.41i)T + 29iT^{2} \) |
| 31 | \( 1 + (3.56 + 3.56i)T + 31iT^{2} \) |
| 37 | \( 1 + (1.70 + 1.70i)T + 37iT^{2} \) |
| 41 | \( 1 + (0.339 - 0.339i)T - 41iT^{2} \) |
| 43 | \( 1 - 8.27iT - 43T^{2} \) |
| 47 | \( 1 - 8.88T + 47T^{2} \) |
| 53 | \( 1 + 11.3iT - 53T^{2} \) |
| 59 | \( 1 - 9.59iT - 59T^{2} \) |
| 61 | \( 1 + (1.82 - 1.82i)T - 61iT^{2} \) |
| 67 | \( 1 + 0.944T + 67T^{2} \) |
| 71 | \( 1 + (-2.32 - 2.32i)T + 71iT^{2} \) |
| 73 | \( 1 + (-11.0 - 11.0i)T + 73iT^{2} \) |
| 79 | \( 1 + (-5.91 + 5.91i)T - 79iT^{2} \) |
| 83 | \( 1 + 0.899iT - 83T^{2} \) |
| 89 | \( 1 + 5.64T + 89T^{2} \) |
| 97 | \( 1 + (7.75 + 7.75i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.22922833964346876628429635940, −9.419875414289758946008583890624, −8.308463903774699919101916417014, −7.61435923960416688737484942320, −6.72052829894670637882734082418, −5.62106544794280629486675658441, −4.34093364322214796285205971976, −3.62362928261277679685482522496, −2.42841130222436896292885273416, −1.27654562213331550814439556268,
1.64833278688601214016250950196, 2.54301662188662547141164053235, 3.83870682825965808457179666801, 5.29223316103068875082108001586, 6.04018220192507053996562304327, 6.79435698169196807133400965271, 7.940404603963360172625431115107, 8.241525505470663649865822329143, 9.095965566511845116698495125108, 10.44129576242150646714977604237