L(s) = 1 | + 0.765i·2-s + (0.707 − 0.707i)3-s + 1.41·4-s + (−0.0582 + 0.0582i)5-s + (0.541 + 0.541i)6-s + (1.95 + 1.95i)7-s + 2.61i·8-s − 1.00i·9-s + (−0.0445 − 0.0445i)10-s + (−0.472 − 0.472i)11-s + (1 − i)12-s + 3.28·13-s + (−1.49 + 1.49i)14-s + 0.0823i·15-s + 0.828·16-s + ⋯ |
L(s) = 1 | + 0.541i·2-s + (0.408 − 0.408i)3-s + 0.707·4-s + (−0.0260 + 0.0260i)5-s + (0.220 + 0.220i)6-s + (0.739 + 0.739i)7-s + 0.923i·8-s − 0.333i·9-s + (−0.0141 − 0.0141i)10-s + (−0.142 − 0.142i)11-s + (0.288 − 0.288i)12-s + 0.910·13-s + (−0.399 + 0.399i)14-s + 0.0212i·15-s + 0.207·16-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 867 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.698 - 0.715i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 867 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.698 - 0.715i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.19099 + 0.923620i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.19099 + 0.923620i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.707 + 0.707i)T \) |
| 17 | \( 1 \) |
good | 2 | \( 1 - 0.765iT - 2T^{2} \) |
| 5 | \( 1 + (0.0582 - 0.0582i)T - 5iT^{2} \) |
| 7 | \( 1 + (-1.95 - 1.95i)T + 7iT^{2} \) |
| 11 | \( 1 + (0.472 + 0.472i)T + 11iT^{2} \) |
| 13 | \( 1 - 3.28T + 13T^{2} \) |
| 19 | \( 1 - 3.64iT - 19T^{2} \) |
| 23 | \( 1 + (6.58 + 6.58i)T + 23iT^{2} \) |
| 29 | \( 1 + (-4.41 + 4.41i)T - 29iT^{2} \) |
| 31 | \( 1 + (3.56 - 3.56i)T - 31iT^{2} \) |
| 37 | \( 1 + (1.70 - 1.70i)T - 37iT^{2} \) |
| 41 | \( 1 + (0.339 + 0.339i)T + 41iT^{2} \) |
| 43 | \( 1 + 8.27iT - 43T^{2} \) |
| 47 | \( 1 - 8.88T + 47T^{2} \) |
| 53 | \( 1 - 11.3iT - 53T^{2} \) |
| 59 | \( 1 + 9.59iT - 59T^{2} \) |
| 61 | \( 1 + (1.82 + 1.82i)T + 61iT^{2} \) |
| 67 | \( 1 + 0.944T + 67T^{2} \) |
| 71 | \( 1 + (-2.32 + 2.32i)T - 71iT^{2} \) |
| 73 | \( 1 + (-11.0 + 11.0i)T - 73iT^{2} \) |
| 79 | \( 1 + (-5.91 - 5.91i)T + 79iT^{2} \) |
| 83 | \( 1 - 0.899iT - 83T^{2} \) |
| 89 | \( 1 + 5.64T + 89T^{2} \) |
| 97 | \( 1 + (7.75 - 7.75i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.44129576242150646714977604237, −9.095965566511845116698495125108, −8.241525505470663649865822329143, −7.940404603963360172625431115107, −6.79435698169196807133400965271, −6.04018220192507053996562304327, −5.29223316103068875082108001586, −3.83870682825965808457179666801, −2.54301662188662547141164053235, −1.64833278688601214016250950196,
1.27654562213331550814439556268, 2.42841130222436896292885273416, 3.62362928261277679685482522496, 4.34093364322214796285205971976, 5.62106544794280629486675658441, 6.72052829894670637882734082418, 7.61435923960416688737484942320, 8.308463903774699919101916417014, 9.419875414289758946008583890624, 10.22922833964346876628429635940