L(s) = 1 | + 2.63·2-s + i·3-s + 4.95·4-s + 2.22i·5-s + 2.63i·6-s − 2.31i·7-s + 7.77·8-s − 9-s + 5.85i·10-s + 1.95i·11-s + 4.95i·12-s + 1.32·13-s − 6.10i·14-s − 2.22·15-s + 10.6·16-s + ⋯ |
L(s) = 1 | + 1.86·2-s + 0.577i·3-s + 2.47·4-s + 0.993i·5-s + 1.07i·6-s − 0.874i·7-s + 2.75·8-s − 0.333·9-s + 1.85i·10-s + 0.588i·11-s + 1.42i·12-s + 0.366·13-s − 1.63i·14-s − 0.573·15-s + 2.65·16-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 867 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.685 - 0.727i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 867 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.685 - 0.727i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(4.34743 + 1.87617i\) |
\(L(\frac12)\) |
\(\approx\) |
\(4.34743 + 1.87617i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 - iT \) |
| 17 | \( 1 \) |
good | 2 | \( 1 - 2.63T + 2T^{2} \) |
| 5 | \( 1 - 2.22iT - 5T^{2} \) |
| 7 | \( 1 + 2.31iT - 7T^{2} \) |
| 11 | \( 1 - 1.95iT - 11T^{2} \) |
| 13 | \( 1 - 1.32T + 13T^{2} \) |
| 19 | \( 1 + 5.95T + 19T^{2} \) |
| 23 | \( 1 + 4.77iT - 23T^{2} \) |
| 29 | \( 1 + 0.172iT - 29T^{2} \) |
| 31 | \( 1 + 0.444iT - 31T^{2} \) |
| 37 | \( 1 + 5.31iT - 37T^{2} \) |
| 41 | \( 1 - 4.02iT - 41T^{2} \) |
| 43 | \( 1 + 8.33T + 43T^{2} \) |
| 47 | \( 1 - 2.38T + 47T^{2} \) |
| 53 | \( 1 - 0.727T + 53T^{2} \) |
| 59 | \( 1 - 11.7T + 59T^{2} \) |
| 61 | \( 1 + 8.68iT - 61T^{2} \) |
| 67 | \( 1 + 14.1T + 67T^{2} \) |
| 71 | \( 1 + 6.10iT - 71T^{2} \) |
| 73 | \( 1 - 10.5iT - 73T^{2} \) |
| 79 | \( 1 - 0.698iT - 79T^{2} \) |
| 83 | \( 1 + 8.52T + 83T^{2} \) |
| 89 | \( 1 - 5.40T + 89T^{2} \) |
| 97 | \( 1 - 4.71iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.76118976575850152535442509113, −9.932123390676542934334007441641, −8.356696451943992744839145784234, −7.12212731715851952361923928180, −6.68457215505677066912284891203, −5.80402737022900106655272074849, −4.61568838682495926601784162811, −4.08299106792502571072853873547, −3.17725116547733289198268432635, −2.17208487813861600852531790190,
1.57174299929084077640902227254, 2.67412297434991057915726490836, 3.77714550909312948866633315121, 4.81778004165919955693354671884, 5.59789752704246244541411467749, 6.17591667827402570895589563203, 7.11911983170943477361317058473, 8.308225911064284408535722668025, 8.911553562621244200629866819116, 10.43021050191494070356790206249